中文版 | English
题名

A Deep Learning Based Approach to Synthesize Intelligible Speech with Limited Temporal Envelope Information

作者
DOI
发表日期
2022
ISSN
2375-7477
ISBN
978-1-7281-2783-5
会议录名称
页码
1972-1976
会议日期
11-15 July 2022
会议地点
Glasgow, Scotland, United Kingdom
摘要
Envelope waveforms can be extracted from multiple frequency bands of a speech signal, and envelope waveforms carry important intelligibility information for human speech communication. This study aimed to investigate whether a deep learning-based model with features of temporal envelope information could synthesize an intelligible speech, and to study the effect of reducing the number (from 8 to 2 in this work) of temporal envelope information on the intelligibility of the synthesized speech. The objective evaluation metric of short-time objective intelligibility (STOI) showed that, on average, the synthesized speech of the proposed approach provided higher STOI (i.e., 0.8) scores in each test condition; and the human listening test showed that the average word correct rate of eight listeners was higher than 97.5%. These findings indicated that the proposed deep learning-based system can be a potential approach to synthesize a highly intelligible speech with limited envelope information in the future.
关键词
学校署名
其他
相关链接[IEEE记录]
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9871247
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401559
专题工学院_电子与电气工程系
工学院_生物医学工程系
作者单位
1.Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
2.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
3.Department of Biomedical Engineering and Medical Device Innovation & Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
推荐引用方式
GB/T 7714
Ching-Ju Hsiao,Fei Chen,Ji-Yan Han,et al. A Deep Learning Based Approach to Synthesize Intelligible Speech with Limited Temporal Envelope Information[C],2022:1972-1976.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ching-Ju Hsiao]的文章
[Fei Chen]的文章
[Ji-Yan Han]的文章
百度学术
百度学术中相似的文章
[Ching-Ju Hsiao]的文章
[Fei Chen]的文章
[Ji-Yan Han]的文章
必应学术
必应学术中相似的文章
[Ching-Ju Hsiao]的文章
[Fei Chen]的文章
[Ji-Yan Han]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。