中文版 | English
题名

Differential-Critic GAN: Generating What You Want by a Cue of Preferences

作者
通讯作者Pan, Yuangang
发表日期
2022-08-01
DOI
发表期刊
ISSN
2162-237X
EISSN
2162-2388
卷号PP期号:99页码:1-15
摘要
This article proposes differential-critic generative adversarial network (DiCGAN) to learn the distribution of user-desired data when only partial instead of the entire dataset possesses the desired property. DiCGAN generates desired data that meet the user's expectations and can assist in designing biological products with desired properties. Existing approaches select the desired samples first and train regular GANs on the selected samples to derive the user-desired data distribution. However, the selection of the desired data relies on global knowledge and supervision over the entire dataset. DiCGAN introduces a differential critic that learns from pairwise preferences, which are local knowledge and can be defined on a part of training data. The critic is built by defining an additional ranking loss over the Wasserstein GAN's critic. It endows the difference of critic values between each pair of samples with the user preference and guides the generation of the desired data instead of the whole data. For a more efficient solution to ensure data quality, we further reformulate DiCGAN as a constrained optimization problem, based on which we theoretically prove the convergence of our DiCGAN. Extensive experiments on a diverse set of datasets with various applications demonstrate that our DiCGAN achieves state-of-the-art performance in learning the user-desired data distributions, especially in the cases of insufficient desired data and limited supervision.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386] ; Shenzhen Science and Technology Program[KQTD2016112514355531] ; Program for Guangdong Provincial Key Laboratory[2020B121201001] ; Australian Research Council[DP200101328]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000849243100001
出版者
EI入藏号
20223712722921
EI主题词
Computer vision ; Constrained optimization ; Personnel training ; Product design
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Vision:741.2 ; Personnel:912.4 ; Production Engineering:913.1 ; Systems Science:961
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9868048
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401573
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Key Lab Brain Inspired Intelligent Comp, Shenzhen 518055, Peoples R China
2.Univ Technol Sydney, Australian Artificial Intelligence Inst, Ultimo, NSW 2007, Australia
3.A STAR Ctr Frontier AI Res, Singapore 138632, Singapore
4.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst RITAS, Shenzhen 518055, Peoples R China
5.Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yao, Yinghua,Pan, Yuangang,Tsang, Ivor W.,et al. Differential-Critic GAN: Generating What You Want by a Cue of Preferences[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,PP(99):1-15.
APA
Yao, Yinghua,Pan, Yuangang,Tsang, Ivor W.,&Yao, Xin.(2022).Differential-Critic GAN: Generating What You Want by a Cue of Preferences.IEEE Transactions on Neural Networks and Learning Systems,PP(99),1-15.
MLA
Yao, Yinghua,et al."Differential-Critic GAN: Generating What You Want by a Cue of Preferences".IEEE Transactions on Neural Networks and Learning Systems PP.99(2022):1-15.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yao, Yinghua]的文章
[Pan, Yuangang]的文章
[Tsang, Ivor W.]的文章
百度学术
百度学术中相似的文章
[Yao, Yinghua]的文章
[Pan, Yuangang]的文章
[Tsang, Ivor W.]的文章
必应学术
必应学术中相似的文章
[Yao, Yinghua]的文章
[Pan, Yuangang]的文章
[Tsang, Ivor W.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。