题名 | Differential-Critic GAN: Generating What You Want by a Cue of Preferences |
作者 | |
通讯作者 | Pan, Yuangang |
发表日期 | 2022-08-01
|
DOI | |
发表期刊 | |
ISSN | 2162-237X
|
EISSN | 2162-2388
|
卷号 | PP期号:99页码:1-15 |
摘要 | This article proposes differential-critic generative adversarial network (DiCGAN) to learn the distribution of user-desired data when only partial instead of the entire dataset possesses the desired property. DiCGAN generates desired data that meet the user's expectations and can assist in designing biological products with desired properties. Existing approaches select the desired samples first and train regular GANs on the selected samples to derive the user-desired data distribution. However, the selection of the desired data relies on global knowledge and supervision over the entire dataset. DiCGAN introduces a differential critic that learns from pairwise preferences, which are local knowledge and can be defined on a part of training data. The critic is built by defining an additional ranking loss over the Wasserstein GAN's critic. It endows the difference of critic values between each pair of samples with the user preference and guides the generation of the desired data instead of the whole data. For a more efficient solution to ensure data quality, we further reformulate DiCGAN as a constrained optimization problem, based on which we theoretically prove the convergence of our DiCGAN. Extensive experiments on a diverse set of datasets with various applications demonstrate that our DiCGAN achieves state-of-the-art performance in learning the user-desired data distributions, especially in the cases of insufficient desired data and limited supervision. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
资助项目 | Program for Guangdong Introducing Innovative and Entrepreneurial Teams[2017ZT07X386]
; Shenzhen Science and Technology Program[KQTD2016112514355531]
; Program for Guangdong Provincial Key Laboratory[2020B121201001]
; Australian Research Council[DP200101328]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Hardware & Architecture
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000849243100001
|
出版者 | |
EI入藏号 | 20223712722921
|
EI主题词 | Computer vision
; Constrained optimization
; Personnel training
; Product design
|
EI分类号 | Artificial Intelligence:723.4
; Computer Applications:723.5
; Vision:741.2
; Personnel:912.4
; Production Engineering:913.1
; Systems Science:961
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9868048 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401573 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Key Lab Brain Inspired Intelligent Comp, Shenzhen 518055, Peoples R China 2.Univ Technol Sydney, Australian Artificial Intelligence Inst, Ultimo, NSW 2007, Australia 3.A STAR Ctr Frontier AI Res, Singapore 138632, Singapore 4.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst RITAS, Shenzhen 518055, Peoples R China 5.Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yao, Yinghua,Pan, Yuangang,Tsang, Ivor W.,et al. Differential-Critic GAN: Generating What You Want by a Cue of Preferences[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,PP(99):1-15.
|
APA |
Yao, Yinghua,Pan, Yuangang,Tsang, Ivor W.,&Yao, Xin.(2022).Differential-Critic GAN: Generating What You Want by a Cue of Preferences.IEEE Transactions on Neural Networks and Learning Systems,PP(99),1-15.
|
MLA |
Yao, Yinghua,et al."Differential-Critic GAN: Generating What You Want by a Cue of Preferences".IEEE Transactions on Neural Networks and Learning Systems PP.99(2022):1-15.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论