中文版 | English
题名

Multi-swarm particle swarm optimization based on CUDA for sparse reconstruction

作者
通讯作者Li,Hao
发表日期
2022-12-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号75
摘要
Particle swarm optimization (PSO) has been successfully applied to the sparse reconstruction problem and achieved good results. With the dimension of the problem increases, parallelizing PSO is an effective method to reduce its running time. This paper proposes a parallel PSO framework to solve the sparse reconstruction problem based on Compute Unified Device Architecture (CUDA) platform on Graphics Processing Unit (GPU). In order to further utilize potential computing resources in the GPU and improve the performance of the algorithm, each particle is launched by CUDA threads and the swarm is divided into multiple sub-swarms in CUDA streams. A local search strategy based on gradient and a particle coding strategy is combined into PSO for the purposes of achieving better reconstruction accuracy and accelerating convergence. In addition, in order to further optimize the parallel execution process of CUDA, the reduction algorithm and dynamic parallelism are incorporated into the proposed method. In the performance experiments, the proposed algorithm achieves a maximum speedup ratio of 25 times compared to the serial version in the signal reconstruction tasks.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61906146];National Natural Science Foundation of China[62036006];Fundamental Research Funds for the Central Universities[JB210210];
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000862301600003
出版者
EI入藏号
20223612700277
EI主题词
Computer graphics ; Computer graphics equipment ; Discrete wavelet transforms ; Local search (optimization) ; Particle swarm optimization (PSO) ; Program processors ; Signal reconstruction
EI分类号
Semiconductor Devices and Integrated Circuits:714.2 ; Information Theory and Signal Processing:716.1 ; Computer Circuits:721.3 ; Computer Peripheral Equipment:722.2 ; Computer Software, Data Handling and Applications:723 ; Computer Applications:723.5 ; Mathematical Transformations:921.3 ; Optimization Techniques:921.5
Scopus记录号
2-s2.0-85137155469
来源库
Scopus
引用统计
被引频次[WOS]:9
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401592
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of Electronic Engineering,Xidian University,Xi'an,No. 2 South TaiBai Rood,710071,China
2.School of System Design and Intelligent Manufacturing,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Han,Wencheng,Li,Hao,Gong,Maoguo,et al. Multi-swarm particle swarm optimization based on CUDA for sparse reconstruction[J]. Swarm and Evolutionary Computation,2022,75.
APA
Han,Wencheng,Li,Hao,Gong,Maoguo,Li,Jianzhao,Liu,Yiting,&Wang,Zhenkun.(2022).Multi-swarm particle swarm optimization based on CUDA for sparse reconstruction.Swarm and Evolutionary Computation,75.
MLA
Han,Wencheng,et al."Multi-swarm particle swarm optimization based on CUDA for sparse reconstruction".Swarm and Evolutionary Computation 75(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Han,Wencheng]的文章
[Li,Hao]的文章
[Gong,Maoguo]的文章
百度学术
百度学术中相似的文章
[Han,Wencheng]的文章
[Li,Hao]的文章
[Gong,Maoguo]的文章
必应学术
必应学术中相似的文章
[Han,Wencheng]的文章
[Li,Hao]的文章
[Gong,Maoguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。