中文版 | English
题名

A Two-channel model for relation extraction using multiple trained word embeddings

作者
通讯作者Han,Zhimin
发表日期
2022-11-14
DOI
发表期刊
ISSN
0950-7051
EISSN
1872-7409
卷号255
摘要
As an essential task in the field of knowledge graph, relation extraction (RE) has received extensive attention from researchers. Since the existing RE methods only adopt one trained word embedding to obtain sentence representation, the polysemy problem cannot be well solved. In order to alleviate the polysemy in RE, this paper proposes a Two-channel model by adopting multiple trained word embeddings, in which one channel is a bidirectional long-short-term memory network based on an attention mechanism (Bi-LSTM-ATT), and the other channel is a convolutional neural network (CNN). Furthermore, a two-channel fusion method is proposed based on this model to deal with polysemy problem in RE. As a result, the Two-channel model achieves 85.42% and 62.2% F1-scores on the Semeval-2010 Task 8 dataset and KBP37 dataset, respectively. The experiment results show that the Two-channel model performs better than most existing models under the condition without using the external features generated by natural language processing (NLP) tools. On the other hand, the two-channel fusion method also obtains a better performance than either concatenation or addition on the two channels.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2018AAA0101601];
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000860573400010
出版者
EI入藏号
20223612683863
EI主题词
Convolutional neural networks ; Extraction ; Knowledge graph ; Long short-term memory ; Natural language processing systems
EI分类号
Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Chemical Operations:802.3
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85137066301
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401594
专题工学院_电子与电气工程系
作者单位
1.Artificial Intelligence Institute,School of Automation,Hangzhou Dianzi University,Hangzhou,China
2.Department of Automation,and BNRist,Tsinghua University,Beijing,China
3.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China
4.Peng Cheng Laboratory,Shenzhen,China
推荐引用方式
GB/T 7714
Wang,Yinmiao,Han,Zhimin,You,Keyou,et al. A Two-channel model for relation extraction using multiple trained word embeddings[J]. KNOWLEDGE-BASED SYSTEMS,2022,255.
APA
Wang,Yinmiao,Han,Zhimin,You,Keyou,&Lin,Zhiyun.(2022).A Two-channel model for relation extraction using multiple trained word embeddings.KNOWLEDGE-BASED SYSTEMS,255.
MLA
Wang,Yinmiao,et al."A Two-channel model for relation extraction using multiple trained word embeddings".KNOWLEDGE-BASED SYSTEMS 255(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yinmiao]的文章
[Han,Zhimin]的文章
[You,Keyou]的文章
百度学术
百度学术中相似的文章
[Wang,Yinmiao]的文章
[Han,Zhimin]的文章
[You,Keyou]的文章
必应学术
必应学术中相似的文章
[Wang,Yinmiao]的文章
[Han,Zhimin]的文章
[You,Keyou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。