中文版 | English
题名

Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network

作者
通讯作者Zhang,Dongxiao
发表日期
2022-10-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号613
摘要
We build surrogate models for dynamic 3D subsurface single-phase flow problems with multiple vertical producing wells. The surrogate model provides efficient pressure estimation of the entire formation at any timestep given a stochastic permeability field, arbitrary well locations and penetration lengths, and a timestep matrix as inputs. The well production rate or bottom hole pressure can then be determined based on Peaceman's formula. The original surrogate modeling task is transformed into an image-to-image regression problem using a convolutional encoder-decoder neural network architecture. The residual of the governing flow equation in its discretized form is incorporated into the loss function to impose theoretical guidance on the model training process. As a result, the accuracy and generalization ability of the trained surrogate models are significantly improved compared to those of fully data-driven models. They are also shown to possess flexible extrapolation ability to permeability fields with different statistics. The surrogate models are used to conduct uncertainty quantification considering a stochastic permeability field, as well as to infer unknown permeability information based on limited well production data and observation data of formation properties. Results are shown to be in close accordance with those of traditional numerical simulation tools, but computational efficiency is dramatically improved.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000862505600004
出版者
EI入藏号
20223612699912
EI主题词
Computation theory ; Computational efficiency ; Convolution ; Convolutional neural networks ; Decoding ; Machine learning ; Network architecture ; Network coding ; Stochastic models ; Stochastic systems ; Uncertainty analysis
EI分类号
Information Theory and Signal Processing:716.1 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Control Systems:731.1 ; Probability Theory:922.1 ; Systems Science:961
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85137165561
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401606
专题理学院_深圳国家应用数学中心
工学院
作者单位
1.Department of Mathematics and Theories,Peng Cheng Laboratory,Shenzhen,Guangdong,518055,China
2.National Center for Applied Mathematics Shenzhen (NCAMS),Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
3.College of Engineering,Peking University,Beijing,100871,China
通讯作者单位深圳国家应用数学中心
推荐引用方式
GB/T 7714
Xu,Rui,Zhang,Dongxiao,Wang,Nanzhe. Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network[J]. JOURNAL OF HYDROLOGY,2022,613.
APA
Xu,Rui,Zhang,Dongxiao,&Wang,Nanzhe.(2022).Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network.JOURNAL OF HYDROLOGY,613.
MLA
Xu,Rui,et al."Uncertainty quantification and inverse modeling for subsurface flow in 3D heterogeneous formations using a theory-guided convolutional encoder-decoder network".JOURNAL OF HYDROLOGY 613(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Rui]的文章
[Zhang,Dongxiao]的文章
[Wang,Nanzhe]的文章
百度学术
百度学术中相似的文章
[Xu,Rui]的文章
[Zhang,Dongxiao]的文章
[Wang,Nanzhe]的文章
必应学术
必应学术中相似的文章
[Xu,Rui]的文章
[Zhang,Dongxiao]的文章
[Wang,Nanzhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。