中文版 | English
题名

Curvature-Variation-Inspired Sampling for Point Cloud Classification and Segmentation

作者
发表日期
2022
DOI
发表期刊
ISSN
1070-9908
EISSN
1558-2361
卷号29页码:1868-1872
摘要
Point cloud is a discrete and unordered expression of 3D data. A lot of methods have been proposed to solve the problem in 3D object classification and scene recognition. To handle the huge amount of unordered point cloud, down-sampling before processing is needed. The shortage of existing sampling methods is the lack of geometry information consideration, which is essential for point cloud classification and segmentation tasks. Our method is mainly motivated by the observation that points with a high curvature variation can depict the outlines of objects. Thus, we propose a curvature variation based sampling method for point cloud classification and segmentation tasks. We aim to sample points with high curvature variations, which are considered to be more suitable for classification and segmentation tasks than the traditional sampling method. We combine the proposed sampling algorithm with the existing sampling method for multiple information fusion, and a higher accuracy and mean IoU can be achieved. The experimental results verify the advantage of considering curvature variation in classification and segmentation tasks.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
Leading Talents of Guangdong Province Program["2016LJ06G498","2019QN01X761"] ; Program for Guangdong Yangfan Innovative and Entrepreneurial Teams[2017YT05G026] ; Guangdong Provincial Special Fund for Modern Agriculture Common Key Technology R&D Innovation Team[2019KJ129] ; China Postdoctoral Science Foundation[2021M701576] ; National Natural Science Foundation of China["62103179","62173096"]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000852825500004
出版者
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85137551614
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9864034
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401652
专题工学院_电子与电气工程系
作者单位
1.Biomimetic and Intelligent Robotics Lab (BIRL), Guangdong University of Technology, Guangzhou, China
2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Zhu,Lei,Chen,Weinan,Lin,Xubin,et al. Curvature-Variation-Inspired Sampling for Point Cloud Classification and Segmentation[J]. IEEE SIGNAL PROCESSING LETTERS,2022,29:1868-1872.
APA
Zhu,Lei,Chen,Weinan,Lin,Xubin,He,Li,&Guan,Yisheng.(2022).Curvature-Variation-Inspired Sampling for Point Cloud Classification and Segmentation.IEEE SIGNAL PROCESSING LETTERS,29,1868-1872.
MLA
Zhu,Lei,et al."Curvature-Variation-Inspired Sampling for Point Cloud Classification and Segmentation".IEEE SIGNAL PROCESSING LETTERS 29(2022):1868-1872.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Lei]的文章
[Chen,Weinan]的文章
[Lin,Xubin]的文章
百度学术
百度学术中相似的文章
[Zhu,Lei]的文章
[Chen,Weinan]的文章
[Lin,Xubin]的文章
必应学术
必应学术中相似的文章
[Zhu,Lei]的文章
[Chen,Weinan]的文章
[Lin,Xubin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。