中文版 | English
题名

Difficulty and Contribution Based Cooperative Coevolution for Large-Scale Optimization

作者
发表日期
2022
DOI
发表期刊
ISSN
1089-778X
EISSN
1941-0026
卷号PP期号:99页码:1-1
摘要
Cooperative coevolution (CC) is a paradigm equipped with the divide-and-conquer strategy for solving large-scale optimization problems. Currently, the computational resource allocation schemes of most CC could be divided into two categories, namely equal allocation to all subproblems and preference allocation to the subproblems with large contribution. However, the difficult subproblems are not carefully considered by the existing computational resource allocation schemes. For these subproblems, the investment of computational resources cannot quickly improve the fitness value, which leads to their small early contribution and being neglected. In this paper, we comprehensively analyze the imbalanced nature of the subproblems from their difficulty and contribution in large-scale optimization problems. First, we propose a method to quantify the optimization difficulty of the problems during the evolution process, which considers both the difficulty of the fitness landscape and the behaviors of the optimization algorithm. Then, we propose a novel both difficulty and contribution based CC framework, called DCCC, which encourages the allocation of the computational resources to more contributing and more difficult subproblems. DCCC is tested on the CEC’2010 and CEC’2013 large-scale optimization benchmarks, and is compared with several typical CC frameworks and state-of-the-art large-scale optimization algorithms. The experimental results demonstrate that DCCC is very competitive.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20223712722112
EI主题词
Investments ; Program processors ; Resource allocation
EI分类号
Management:912.2 ; Optimization Techniques:921.5
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85137546008
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9866826
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401653
专题南方科技大学
作者单位
1.the School of Computer Science and Technology, Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Harbin Institute of Technology, Shenzhen, China
2.the School of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Xu,Peilan,Luo,Wenjian,Lin,Xin,et al. Difficulty and Contribution Based Cooperative Coevolution for Large-Scale Optimization[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2022,PP(99):1-1.
APA
Xu,Peilan,Luo,Wenjian,Lin,Xin,Chang,Yatong,&Tang,Ke.(2022).Difficulty and Contribution Based Cooperative Coevolution for Large-Scale Optimization.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,PP(99),1-1.
MLA
Xu,Peilan,et al."Difficulty and Contribution Based Cooperative Coevolution for Large-Scale Optimization".IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION PP.99(2022):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Peilan]的文章
[Luo,Wenjian]的文章
[Lin,Xin]的文章
百度学术
百度学术中相似的文章
[Xu,Peilan]的文章
[Luo,Wenjian]的文章
[Lin,Xin]的文章
必应学术
必应学术中相似的文章
[Xu,Peilan]的文章
[Luo,Wenjian]的文章
[Lin,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。