题名 | Collective Learning of Low-Memory Matrix Adaptation for Large-Scale Black-Box Optimization |
作者 | |
通讯作者 | Duan,Qiqi |
DOI | |
发表日期 | 2022
|
会议名称 | 17th International Conference on Parallel Problem Solving from Nature (PPSN)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-14720-3
|
会议录名称 | |
卷号 | 13399 LNCS
|
页码 | 281-294
|
会议日期 | SEP 10-14, 2022
|
会议地点 | null,Dortmund,GERMANY
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | The increase of computing power can be continuously driven by parallelism, despite of the end of Moore’s law. To cater to this trend, we propose to parallelize the low-memory matrix adaptation evolution strategy (LM-MA-ES) recently proposed for large-scale black-box optimization, aiming at further improving its scalability (w.r.t. CPU cores) in the modern distributed computing platform. To achieve this aim, three key design choices are carefully made and naturally combined within the multilevel learning framework. First, to fit into the memory hierarchy and reduce communication cost, which is critical for parallel performance on modern multi-core computer architectures, the well-known island model with a star interaction network is employed to run multiple concurrent LM-MA-ES instances, each of which can be effectively and serially executed in each separate island owing to its low computational complexity. Second, to support fast convergence under the multilevel learning framework, we adopt Meta-ES to hierarchically exploit the spatial-nonlocal information for global step-size adaptation at the outer-ES level, combined with cumulative step-size adaptation, which exploits the temporal-nonlocal information in the inner-ES (i.e., serial LM-MA-ES) level. Third, a set of fitter individuals at the outer-ES level, represented as (distribution mean, evolution path, transformation matrix)-tuples, are collectively recombined to utilize the desirable genetic repair effect for statistically more stable online learning. Experiments in a clustering computing environment empirically validate the parallel performance of our approach on high-dimensional memory-costly test functions. Its Python code is available at https://github.com/Evolutionary-Intelligence/D-LM-MA. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Shenzhen Fundamental Research Program[JCYJ20200109141235597]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000871753400020
|
EI入藏号 | 20223712707331
|
EI主题词 | Computing power
; Evolutionary algorithms
; Learning systems
; Linear transformations
; Matrix algebra
; Memory architecture
|
EI分类号 | Computer Systems and Equipment:722
; Computer Peripheral Equipment:722.2
; Digital Computers and Systems:722.4
; Computer Software, Data Handling and Applications:723
; Algebra:921.1
; Mathematical Transformations:921.3
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85137275010
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401661 |
专题 | 南方科技大学 |
作者单位 | 1.Harbin Institute of Technology,Harbin,China 2.University of Technology Sydney,Sydney,Australia 3.Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Duan,Qiqi,Zhou,Guochen,Shao,Chang,et al. Collective Learning of Low-Memory Matrix Adaptation for Large-Scale Black-Box Optimization[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:281-294.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论