题名 | Direction Vector Selection for R2-Based Hypervolume Contribution Approximation |
作者 | |
通讯作者 | Shang,Ke |
DOI | |
发表日期 | 2022
|
会议名称 | 17th International Conference on Parallel Problem Solving from Nature (PPSN)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-14720-3
|
会议录名称 | |
卷号 | 13399 LNCS
|
页码 | 110-123
|
会议日期 | SEP 10-14, 2022
|
会议地点 | null,Dortmund,GERMANY
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Recently, an R2-based hypervolume contribution approximation (i.e., R2HVC indicator) has been proposed and applied to evolutionary multi-objective algorithms and subset selection. The R2HVC indicator approximates the hypervolume contribution using a set of line segments determined by a direction vector set. Although the R2HVC indicator is computationally efficient compared with the exact hypervolume contribution calculation, its approximation error is large if an inappropriate direction vector set is used. In this paper, we propose a method to generate a direction vector set for reducing the approximation error of the R2HVC indicator. The method generates a set of direction vectors by selecting a small direction vector set from a large candidate direction vector set in a greedy manner. Experimental results show that the proposed method outperforms six existing direction vector set generation methods. The direction vector set generated by the proposed method can be further used to improve the performance of hypervolume-based algorithms which rely on the R2HVC indicator. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China["62002152","61876075"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000871753400008
|
EI入藏号 | 20223712707360
|
EI主题词 | Approximation algorithms
; Genetic algorithms
; Vectors
|
EI分类号 | Mathematics:921
; Algebra:921.1
; Optimization Techniques:921.5
|
Scopus记录号 | 2-s2.0-85137270657
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401662 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Shu,Tianye,Shang,Ke,Nan,Yang,et al. Direction Vector Selection for R2-Based Hypervolume Contribution Approximation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:110-123.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论