中文版 | English
题名

Robust Neural Network Pruning by Cooperative Coevolution

作者
通讯作者Qian,Chao
DOI
发表日期
2022
会议名称
17th International Conference on Parallel Problem Solving from Nature (PPSN)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-14713-5
会议录名称
卷号
13398 LNCS
页码
459-473
会议日期
SEP 10-14, 2022
会议地点
null,Dortmund,GERMANY
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Convolutional neural networks have achieved success in various tasks, but often lack compactness and robustness, which are, however, required under resource-constrained and safety-critical environments. Previous works mainly focused on enhancing either compactness or robustness of neural networks, such as network pruning and adversarial training. Robust neural network pruning aims to reduce computational cost while preserving both accuracy and robustness of a network. Existing robust pruning works usually require expert experiences and trial-and-error to design proper pruning criteria or auxiliary modules, limiting their applications. Meanwhile, evolutionary algorithms (EAs) have been used to prune neural networks automatically, achieving impressive results but without considering the robustness. In this paper, we propose a novel robust pruning method CCRP by cooperative coevolution. Specifically, robust pruning is formulated as a three-objective optimization problem that optimizes accuracy, robustness and compactness simultaneously, and solved by a cooperative coevolution pruning framework, which prunes filters in each layer by EAs separately. The experiments on CIFAR-10 and SVHN show that CCRP can achieve comparable performance with state-of-the-art methods.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
NSFC["62022039","62106098"] ; Jiangsu NSF[BK20201247]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000871752100032
EI入藏号
20223512669288
EI主题词
Safety engineering
EI分类号
Safety Engineering:914
Scopus记录号
2-s2.0-85136948397
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401669
专题工学院_计算机科学与工程系
作者单位
1.State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing,210023,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Wu,Jia Liang,Shang,Haopu,Hong,Wenjing,et al. Robust Neural Network Pruning by Cooperative Coevolution[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:459-473.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wu,Jia Liang]的文章
[Shang,Haopu]的文章
[Hong,Wenjing]的文章
百度学术
百度学术中相似的文章
[Wu,Jia Liang]的文章
[Shang,Haopu]的文章
[Hong,Wenjing]的文章
必应学术
必应学术中相似的文章
[Wu,Jia Liang]的文章
[Shang,Haopu]的文章
[Hong,Wenjing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。