题名 | HVC-Net: Deep Learning Based Hypervolume Contribution Approximation |
作者 | |
通讯作者 | Ishibuchi,Hisao |
DOI | |
发表日期 | 2022
|
会议名称 | 17th International Conference on Parallel Problem Solving from Nature (PPSN)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-14713-5
|
会议录名称 | |
卷号 | 13398 LNCS
|
页码 | 414-426
|
会议日期 | SEP 10-14, 2022
|
会议地点 | null,Dortmund,GERMANY
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | In this paper, we propose HVC-Net, a deep learning based hypervolume contribution approximation method for evolutionary multi-objective optimization. The basic idea of HVC-Net is to use a deep neural network to approximate the hypervolume contribution of each solution in a non-dominated solution set. HVC-Net has two characteristics: (1) It is permutation equivalent to the order of solutions in the input solution set, and (2) a single HVC-Net can handle solution sets of various size (e.g., solution sets with 20, 50 and 100 solutions). The performance of HVC-Net is evaluated through computational experiments by comparing it with two commonly-used hypervolume contribution approximation methods (i.e., point-based method and line-based method). Our experimental results show that HVC-Net outperforms the other two methods in terms of both the runtime and the ability to identify the smallest (largest) hypervolume contributor in a solution set, which shows the superiority of HVC-Net for hypervolume contribution approximation. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China["62002152","61876075"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000871752100029
|
EI入藏号 | 20223512669284
|
EI主题词 | Approximation theory
; Evolutionary algorithms
; Multiobjective optimization
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85136924801
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401671 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Shang,Ke,Liao,Weiduo,Ishibuchi,Hisao. HVC-Net: Deep Learning Based Hypervolume Contribution Approximation[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:414-426.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论