中文版 | English
题名

Local Low-Rank Approximation With Superpixel-Guided Locality Preserving Graph for Hyperspectral Image Classification

作者
发表日期
2022
DOI
发表期刊
ISSN
1939-1404
EISSN
2151-1535
卷号15页码:7741-7754
摘要
Given the detrimental effect of spectral variations in a hyperspectral image (HSI), this paper investigates to recover its discriminative representation to improve the classification performance. We propose a new method, namely local low-rank approximation with superpixel-guided locality preserving graph (LLRA-SLPG), which can reduce the spectral variations and preserve the local manifold structure of an HSI. Specifically, the LLRA-SLPG method first clusters pixels of an HSI into several groups (i.e., superpixels). By taking advantage of the local manifold structure, a Laplacian graph is constructed from the superpixels to ensure that a typical pixel should be similar to its neighbors within the same superpixel. The LLRA-SLPG model can increase the compactness of pixels belonging to the same class by reducing spectral variations while promoting local consistency via the Laplacian graph. The objective function of the LLRA-SLPG model can be solved efficiently in an iterative manner. Experimental results on four benchmark datasets validate the superiority of the LLRA-SLPG model over state-of-the-art methods, particularly in cases where only extremely few training pixels are available.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一
EI入藏号
20223512671990
EI主题词
Computer programming ; Hyperspectral imaging ; Image classification ; Image enhancement ; Image segmentation ; Iterative methods ; Laplace transforms ; Linear programming ; Spectroscopy ; Structure (composition)
EI分类号
Computer Programming:723.1 ; Data Processing and Image Processing:723.2 ; Imaging Techniques:746 ; Mathematical Transformations:921.3 ; Numerical Methods:921.6 ; Materials Science:951
Scopus记录号
2-s2.0-85136886123
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9861684
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401672
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
3.School of Computer Science and Engineering, Southeast University, Nanjing, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yang,Shujun,Zhang,Yu,Jia,Yuheng,et al. Local Low-Rank Approximation With Superpixel-Guided Locality Preserving Graph for Hyperspectral Image Classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:7741-7754.
APA
Yang,Shujun,Zhang,Yu,Jia,Yuheng,&Zhang,Weijia.(2022).Local Low-Rank Approximation With Superpixel-Guided Locality Preserving Graph for Hyperspectral Image Classification.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,15,7741-7754.
MLA
Yang,Shujun,et al."Local Low-Rank Approximation With Superpixel-Guided Locality Preserving Graph for Hyperspectral Image Classification".IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15(2022):7741-7754.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Shujun]的文章
[Zhang,Yu]的文章
[Jia,Yuheng]的文章
百度学术
百度学术中相似的文章
[Yang,Shujun]的文章
[Zhang,Yu]的文章
[Jia,Yuheng]的文章
必应学术
必应学术中相似的文章
[Yang,Shujun]的文章
[Zhang,Yu]的文章
[Jia,Yuheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。