题名 | Effective Meta-Regularization by Kernelized Proximal Regularization |
作者 | |
通讯作者 | Zhang,Yu |
发表日期 | 2021
|
ISSN | 1049-5258
|
会议录名称 | |
卷号 | 31
|
页码 | 26212-26222
|
摘要 | We study the problem of meta-learning, which has proved to be advantageous to accelerate learning new tasks with a few samples. The recent approaches based on deep kernels achieve the state-of-the-art performance. However, the regularizers in their base learners are not learnable. In this paper, we propose an algorithm called MetaProx to learn a proximal regularizer for the base learner. We theoretically establish the convergence of MetaProx. Experimental results confirm the advantage of the proposed algorithm. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[62076118];
|
EI入藏号 | 20222512238272
|
Scopus记录号 | 2-s2.0-85131910909
|
来源库 | Scopus
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/401700 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering,Southern University of Science and Technology,China 2.Department of Computer Science and Engineering,Hong Kong University of Science and Technology,Hong Kong 3.Peng Cheng Laboratory,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Jiang,Weisen,Kwok,James T.,Zhang,Yu. Effective Meta-Regularization by Kernelized Proximal Regularization[C],2021:26212-26222.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论