中文版 | English
题名

Distant Transfer Learning via Deep Random Walk

作者
通讯作者Zhang,Yu
发表日期
2021
会议录名称
卷号
12A
页码
10422-10429
摘要
Transfer learning, which is to improve the learning performance in the target domain by leveraging useful knowledge from the source domain, often requires that those two domains are very close, which limits its application scope. Recently, distant transfer learning has been studied to transfer knowledge between two distant or even totally unrelated domains via unlabeled auxiliary domains that act as a bridge in the spirit of human transitive inference that two completely unrelated concepts can be connected through gradual knowledge transfer. In this paper, we study distant transfer learning by proposing a DeEp Random Walk basEd distaNt Transfer (DERWENT) method. Different from existing distant transfer learning models that implicitly identify the path of knowledge transfer between the source and target instances through auxiliary instances, the proposed DERWENT model can explicitly learn such paths via the deep random walk technique. Specifically, based on sequences identified by the random walk technique on a data graph where source and target data have no direct connection, the proposed DERWENT model enforces adjacent data points in a sequence to be similar, makes the ending data point be represented by other data points in the same sequence, and considers weighted classification losses of source data. Empirical studies on several benchmark datasets demonstrate that the proposed DERWENT algorithm yields the state-of-the-art performance.
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[62076118];
EI入藏号
20222012117973
EI主题词
Benchmarking ; Deep learning ; Knowledge management
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Computer Applications:723.5 ; Information Retrieval and Use:903.3 ; Probability Theory:922.1
Scopus记录号
2-s2.0-85130025623
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401702
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
2.Peng Cheng Laboratory,Shenzhen,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xiao,Qiao,Zhang,Yu. Distant Transfer Learning via Deep Random Walk[C],2021:10422-10429.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiao,Qiao]的文章
[Zhang,Yu]的文章
百度学术
百度学术中相似的文章
[Xiao,Qiao]的文章
[Zhang,Yu]的文章
必应学术
必应学术中相似的文章
[Xiao,Qiao]的文章
[Zhang,Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。