中文版 | English
题名

Multi-Objective Meta Learning

作者
通讯作者Zhang,Yu
发表日期
2021
ISSN
1049-5258
会议录名称
卷号
26
页码
21338-21351
摘要
Meta learning with multiple objectives has been attracted much attention recently since many applications need to consider multiple factors when designing learning models. Existing gradient-based works on meta learning with multiple objectives mainly combine multiple objectives into a single objective in a weighted sum manner. This simple strategy usually works but it requires to tune the weights associated with all the objectives, which could be time consuming. Different from those works, in this paper, we propose a gradient-based Multi-Objective Meta Learning (MOML) framework without manually tuning weights. Specifically, MOML formulates the objective function of meta learning with multiple objectives as a Multi-Objective Bi-Level optimization Problem (MOBLP) where the upper-level subproblem is to solve several possibly conflicting objectives for the meta learner. To solve the MOBLP, we devise the first gradient-based optimization algorithm by alternatively solving the lower-level and upper-level subproblems via the gradient descent method and the gradient-based multi-objective optimization method, respectively. Theoretically, we prove the convergence properties of the proposed gradient-based optimization algorithm. Empirically, we show the effectiveness of the proposed MOML framework in several meta learning problems, including few-shot learning, domain adaptation, multi-task learning, and neural architecture search. The source code of MOML is available at https://github.com/Baijiong-Lin/MOML.
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Natural Science Foundation of China[62076118];
EI入藏号
20222412232710
EI主题词
Gradient methods ; Learning systems
EI分类号
Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85124639579
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401705
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,China
2.University of Technology Sydney,Australia
3.Eindhoven University of Technology,Netherlands
4.Peng Cheng Laboratory,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ye,Feiyang,Lin,Baijiong,Yue,Zhixiong,et al. Multi-Objective Meta Learning[C],2021:21338-21351.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ye,Feiyang]的文章
[Lin,Baijiong]的文章
[Yue,Zhixiong]的文章
百度学术
百度学术中相似的文章
[Ye,Feiyang]的文章
[Lin,Baijiong]的文章
[Yue,Zhixiong]的文章
必应学术
必应学术中相似的文章
[Ye,Feiyang]的文章
[Lin,Baijiong]的文章
[Yue,Zhixiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。