中文版 | English
题名

Automatic grassland degradation estimation using deep learning

作者
通讯作者Zheng,Feng
DOI
发表日期
2019
ISSN
1045-0823
会议录名称
卷号
2019-August
页码
6028-6034
摘要
Grassland degradation estimation is essential to prevent global land desertification and sandstorms. Typically, the key to such estimation is to measure the coverage of indicator plants. However, traditional methods of estimation rely heavily on human eyes and manual labor, thus inevitably leading to subjective results and high labor costs. In contrast, deep learning-based image segmentation algorithms are potentially capable of automatic assessment of the coverage of indicator plants. Nevertheless, a suitable image dataset comprising grassland images is not publicly available. To this end, we build an original Automatic Grassland Degradation Estimation Dataset (AGDE-Dataset), with a large number of grassland images captured from the wild. Based on AGDE-Dataset, we are able to propose a brand new scheme to automatically estimate grassland degradation, which mainly consists of two components. 1) Semantic segmentation: we design a deep neural network with an improved encoder-decoder structure to implement semantic segmentation of grassland images. In addition, we propose a novel Focal-Hinge loss to alleviate the class imbalance of semantics in the training stage. 2) Degradation estimation: we provide the estimation of grassland degradation based on the results of semantic segmentation. Experimental results show that the proposed method achieves satisfactory accuracy in grassland degradation estimation.
学校署名
通讯
语种
英语
相关链接[Scopus记录]
Scopus记录号
2-s2.0-85074939389
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401734
专题南方科技大学
作者单位
1.Dept. of Computer Science and Technology,Tsinghua University,China
2.PCL Research Center of Networks and Communications,Peng Cheng Laboratory,China
3.Baidu,Inc.,
4.Dept. of Computer Technology and Applications,Qinghai University,China
5.Dept. of Computer Science and Engineering,Southern University of Science and Technology,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yan,Xiyu,Jiang,Yong,Chen,Shuai,et al. Automatic grassland degradation estimation using deep learning[C],2019:6028-6034.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yan,Xiyu]的文章
[Jiang,Yong]的文章
[Chen,Shuai]的文章
百度学术
百度学术中相似的文章
[Yan,Xiyu]的文章
[Jiang,Yong]的文章
[Chen,Shuai]的文章
必应学术
必应学术中相似的文章
[Yan,Xiyu]的文章
[Jiang,Yong]的文章
[Chen,Shuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。