中文版 | English
题名

STUDIES ON TRANSITION METAL-CATALYZED ASYMMETRIC REDUCTIONS AND REDUCTIVE AMINATIONS

姓名
姓名拼音
SHI Yongjie
学号
11850009
学位类型
博士
学位专业
化学
导师
段乐乐
导师单位
化学系
论文答辩日期
2022-08-17
论文提交日期
2022-09-22
学位授予单位
香港大学
学位授予地点
香港
摘要

The synthesis of enantioenriched NH lactams from ketoesters and ketoacids was achieved via direct asymmetric reductive amination and cyclization cascade reactions. The reaction showed wide substrate scope and good functional group tolerance. Various γ-, δ-, and ε-keto esters/acids were converted to the corresponding NH lactams of five-, six-, or seven-membered rings in generally high yields and good enantioselectivities. Structurally diverse chiral NH benzo-lactams were also synthesized smoothly. The amine salts, hydrogen gas and catalytic amount of metal complex applied in this method showcase the economy and high efficiency of this reaction. The scalable and concise preparation of key intermediates en route to the synthesis of larotrectinib, (+)-garenoxacin, and other bioactive molecules further illustrate the practicality of this strategy.

An efficient and straightforward method to synthesize optically active Nunprotected α-amino acetals via ruthenium-catalyzed direct asymmetric reductive amination was developed. As versatile and valuable platform molecules, α-amino acetals could be converted to corresponding α-amino acids, amino alcohols, or other derivatives via convenient transformations. Two gram-scale reactions and the application towards the synthesis of a natural product, (−)-cytoxazone, highlight the practicality and potential of this methodology.

An exclusive asymmetric 1,2-reduction of cycloalkenones was induced by using (R)-DTBM-C3 * -TunePhos ligated copper hydride as the catalyst. The reduction of unsubstituted cyclohexenones resulted in allylic alcohols with moderate 71-77% ee, albeit with high chemoselectivity and yields. Reduction of α-brominated cycloalkenones resulted in excellent enantioselectivities of up to 98% ee and high yields. Five-, six-, and seven-membered substrates with diverse β-substitutions including aryl, alkyl, allyl, alkynyl were all well-tolerated under the optimized reductive conditions, thus giving the corresponding α-bromo-substituted allylic alcohols successfully. Acyclic as well as α-methylated substrates were also evaluated for reduction under these conditions. The products are versatile intermediates, and several elaborations of these α-bromo-substituted allylic alcohols were conducted.

关键词
语种
英语
培养类别
联合培养
入学年份
2018
学位授予年份
2022-11
参考文献列表

[1. Top 200 SMALL Molecule Drugs by Sales in 2018, a poster made by the Jon T. Njardarson group, https://njardarson.lab.arizona.edu/content/top-pharmaceuticalsposter.
2. L. M. Jarvis, Chem. Eng. News, 2016, 94, 12–17.
3. R. Noyori, T. Ohkuma, Angew. Chem., Int. Ed. 2001, 40, 40-73, and references therein.
4. Xu, L.-W.; Lu, Y. Org. Biomol. Chem. 2008, 6, 2047-2053.
5. Haas, J.; Andrews, S. W.; Jiang, Y.; Zhang, G. Substituted pyrazolo
[1,5-a]pyrimidine compounds as Trk kinase inhibitors and their preparation and use in the treatment of diseases, WO2010048314A1, 2010.
6. Yang, X.; Wu, F.; Ni, Y.; Tang, C.; Xiao, S. Resolution method of R-(+)-1-(1-naphthyl) ethylamine CN200910201301A, 2010.
7. Bloch, R. Chem. Rev. 1998, 98, 1407-1438.
8. Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069-1094.
9. Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63, 9581-9597.
10. Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T.; J. Am. Chem. Soc. 2004, 126, 13584-13585.
11. Reddy, R. P.; Davies, H. M. L. Org. Lett. 2006, 8, 5013-5016.47
12. Raheem, I. T.; Jacobsen, E.N. Adv. Synth. Catal. 2005, 347, 1701-1708.
13. Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357.
14. Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445-2447.
15. Gröger, H. Chem. Rev. 2003, 103, 2795-2827.
16. Rueping, M.; Antonchick, A. P. Org. Lett. 2008, 10, 1731-1734.
17. Nugent, T. C. Chiral Amine Synthesis, Wiley-VCH, 2010, ISBN: 978-3-527-32509-2.
18. Fleury-Brégeot, N.; Fuente, V.; Castillón, Sergio; Claver, C. ChemCatChem 2010, 2, 1346-1371.
19. Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Rev. 2011, 111, 1713-1760.
20. Xie, J.-H.; Zhu, S.-F.; Zhou, Q.-L. Chem. Soc. Rev. 2012, 41, 4126-4139.
21. Barrios-Rivera, J.; Xu, Y.; Wills, M.; Vyas, V. K. Org. Chem. Front. 2020, 7, 3312-3342.
22. Ponra, S.; Boudet, B.; Phansavath, P.; Ratovelomanana-Vidal, V. Synthesis 2021, 53, 193-214.
23. Dang, T. P.; Kagan, H. B. J. Chem. Soc., Chem. Commun. 1971, 481.
24. Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 594648
25. Kitamura, M.; Tsukamoto, M.; Bessho, Y. Yoshimura, M.; Kobs, U.; Widhalm, M. Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649-6667.
26. Yin, Q.; Shi, Y. Wang, J.; Zhang, X. Chem. Soc. Rev. 2020, 49, 6141-6153.
27. Hou, G.; Gosselin, F.; Li, W.; McWilliams, J. C.; Sun, Y.; Weisel, M.; O’Shea, P. D.; Chen, C.; Davies I. W.; Zhang, X. J. Am. Chem. Soc. 2009, 131, 9882-9883.
28. Hou, G.; Tao, R.; Sun, Y.; Zhang, X.; Gosselin, F. J. Am. Chem. Soc. 2010, 132, 2124-2125.
29. Zhao, Q.; Wen, J.; Tan, R.; Huang, K.; Metola, P.; Wang, R.; Anslyn, E. V.; Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 8467-8470.
30. Erker, G.; Riedel, M.; Koch, S.; Joedicke, T.; Wuerthwein, E.-U. J. Org. Chem. 1995, 60, 5284-5290.
31. Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.; Sun, Y.;Armstrong, J. D.; Grabowski, E. J. J.; Tillyer, R. D.; Spindler, F.; Malan, C. J. Am. Chem. Soc. 2004, 126, 9918-9919.
32. Hou, G.; Li, W.; Ma, M.; Zhang, X.; Zhang, X.; J. Am. Chem. Soc. 2010, 132, 12844-12846.
33. Ye, J.; Wang, C.; Chen, L.; Wu, X.; Zhou, L.; Sun, J. Adv. Synth. Catal. 2016, 358, 1042-1047.
34. Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357-1366.49
35. Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557-2590.
36. Zhao, D.; Glorius, F. Angew. Chem. Int. Ed. 2013, 52, 9616-9618.
37. Wiesenfeldt, M. P.; Nairoukh, Z.; Dalton, T.; Glorius, F. Angew. Chem. Int. Ed. 2019, 58, 10460-10476.
38. Kim, A. N.; Stoltz, B. M. ACS Catal. 2020, 10, 13834-13851.
39. Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc.2003, 125, 10536-10537.
40. Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X. J. Org. Chem. 2009, 74, 2780-2787.41. Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem. Int. Ed. 2006, 45, 2260-2263.42. Tian, Y.; Hu, L.; Wang, Y.-Z.; Zhang, X.; Yin, Q. Org. Chem. Front. 2021, 8, 2328-2342.43. Blaser, H.-U.; Buser, H.-P.; Jalett, H.-P.; Pugin, B.; Spindler, F. Synlett, 1999, 867-868.44. Li, C.-Q.; Villa-Marcos, B.; Xiao, J.-L. J. Am. Chem. Soc. 2009, 131, 6967-6969.45. Smith, J.; Kacmaz, A.; Wang, C.; Villa-Marcos, B.; Xiao, J.-L. Org. Biomol. Chem.2021, 19, 279-284.5046. Zhou, S.-L.; Fleischer, S.; Jiao, H.-J.; Junge, K.; Beller, M. Adv. Synth. Catal. 2014,356, 3451-3455.47. Liu, R.-X.; Li, B.; Han, J.-K.; Zhang, D.-X.; Li, M.-Q.; Yao, L.; Zhao, W.; Wang, Q.-F.; Jiang, R.; Nie, H.-F. Catal. Sci. Technol. 2020, 10, 5448-5452.48. Yang, P.; Lim, L.-H.; Chuanprasit, P.; Hirao, H.; Zhou, J.-R. Angew. Chem., Int. Ed. 2016, 55, 12083-12087.49. Cabrera, A.; Sharma, P.; Pérez-Flores, F. J., Velasco, L. Ariasb, J. L.; Rubio-Pérez, L. Catal. Sci. Technol. 2014, 4, 2626-2630.50. Huang, H.-Z.; Liu, X.-Y.; Zhou, L.; Chang, M.-X.; Zhang, X.-M. Angew. Chem. Int. Ed. 2016, 55, 5309-5312.51. Huang, H.-Z.; Zhao, Y.-F.; Yang, Y.; Zhou, L.; Chang, M.-X. Org. Lett. 2017, 19, 1942-1945.52. Wu, Z.-T.; Du, S.-Z.; Gao, G.-R.; Yang, W.-K.; Yang, X.-Y.; Huang, H.-Z.; Chang, M.-X. Chem. Sci. 2019, 10, 4509-4514. 53. Bunlaksananusorn, T.; Rampf, F. Synlett 2005, 17, 2682-2684.54. Steinhuebel, D.; Sun, Y.; Matsumura, K.; Sayo, N.; Saito, T. J. Am. Chem. Soc.2009, 131, 11316-11317.55. Matsumura, K.; Zhang, X.; Hori, K.; Murayama, T.; Ohmiya, T.; Shimizu, H.; Saito, T.; Sayo, N. Org. Process Res. Dev. 2011, 15, 1130–1137.5156. Mattei, P.; Moine, G.; Püntener, K.; Schmid, R. Org. Process Res. Dev. 2011, 15, 353-359.57. Lou, Y.; Hu, Y.; Lu, J.; Guan, F.; Gong, G.; Yin, Q.; Zhang, X. Angew. Chem. Int. Ed. 2018, 57, 14193-14197.58. Donaire, J. G.; Hermsen, M.; Wysocki, J.; Ernst, M.; Rominger, F.; Trapp, O.; Hashmi, A. S. K.; A. Schäfer, Comba, P.; Schaub, T. J. Am. Chem. Soc. 2018, 140, 355-361.59. Tan, X.; Gao, S.; Zeng, W.; Xin, S.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 2024-2027.60. Brewer, A. C.; Ruble, J. C.; Vandeveer, H. G.; Frank, S. A.; Nevill, C. R. Org. Process Res. Dev. 2021, 25, 576-582.61. Hu, L.; Zhang, Yao; Zhang, Q-W.; Yin, Q.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 5321-5325.62. Ghosh, T.; Ernst, M.; Hashmi, A. S. K.; Schaub, T. Eur. J. Org. Chem. 2020, 4796-48001. Bräse, S. Privileged scaffolds in medicinal chemistry: design, synthesis, evaluation; RSC, 2015.2. F. Rivas; T. Ling. Org. Prep. Proced. Int. 2016, 48, 254-295.3. Liu, H.; He, X.; Phillips, D.; Zhu, X.; Yang, K.; Lau, T.; Wu, B.; Xie, Y.; Nguyen, T. N.; Wang, X. WO2008076754A2, 2008.4. Khadem, S.; Marles, R. J. Molecules 2012, 17, 191-206.5. Reichard, G. A.; Paliwal, S.; Shih, N.-Y.; Xiao, D.; Tsui, H.-C.; Shah, S.; Wang, C.; Wrobleski, M. L.; WO 2003042173, 2003.6. Wood, M. R.; Gallicchio, S. N.; Selnick, H. G.; Zartman, C. B.; Bell, I. M.; Stump, C. A. US 20070265225, 2007.7. Speck, K.; Magauer, T. Beilstein J. Org. Chem. 2013, 9, 2048-2078.8. Li, E.; Jiang, L.; Guo, L.; Zhang, H.; Che, Y. Bioorg. Med. Chem. 2008, 16, 7894-7899.9. Almeida, C.; Hemberger, Y.; Schmitt, S. M.; Bouhired, S.; Natesan, L.; Kehraus, S.; Dimas, K.; Gtschow, M.; Bringmann, G.; König, G. M. Chem. Eur. J. 2012, 18, 8827-8834.10. Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257-10274.11. Reddy, L. R.; Prasad, K.; Prashad, M. A. J. Org. Chem. 2012, 77, 6296-6301.9712. Guijarro, D.; Pablo, Ó.; Yus, M. J. Org. Chem. 2013, 78, 3647-3654.13. Cheemala, M. N.; Knochel, P. Org. Lett. 2007, 9, 3089-3092.14. Das, B. G.; Nallagonda, R.; Dey, D.; Ghorai, P. Chem. Eur. J. 2015, 21, 12601-12605.15. Huang, Y. B.; Dai, J. J.; Deng, X. J.; Qu, Y. C.; Guo, Q. X.; Fu, Y. ChemSusChem, 2011, 4, 1578-1581.16. Wei, Y.; Wang, C.; Jiang, X.; Xue, D.; Li, J.; Xiao, J. Chem. Commun., 2013, 49, 5408-5410.17. Wei, Y.; Wang, C.; Jiang, X.; Xue, D.; Liu, Z.-T.; Xiao, J. Green Chem., 2014, 16, 1093-1096.18. Ogiwara, Y.; Uchiyama, T.; Sakai, N. Angew. Chem. Int. Ed. 2016, 55, 1864-1867.19. Xu, Z.; Yan, P.; Jiang, H.; Liu, K.; Zhang, Z. C. Chin. J. Chem. 2017, 35, 581-585.20. Mourelle-Insua, Á.; Zampieri, L. A.; Lavandera, I.; Gotor-Fernándeza, V. Adv. Synth. Catal. 2018, 360, 686-695.21. Hu, L.; Zhang, Yao; Zhang, Q-W.; Yin, Q.; Zhang, X. Angew. Chem. Int. Ed. 2020, 59, 5321-5325.22. Scott, L. J. Drugs 2019, 79, 201–206.23. Ning, Z.; Yang, L.; Peng, F.; Wei, G.; Huang, X.; Faming Zhuanli Shenqing, CN 109053525, 2018.9824. Haas, Julia.; Andrews, S. W.; Jiang, Y.; Zhang, G. WO 2010048314A1, 2010.25. Yamada, M.; Hamamoto, S.; Hayashi, K.; Takaoka, K.; Matsukura, H.; Yotsuji, M.; Yonezawa, K.; Ojima, K.; Takamatsu, T.; Taya, K.; Yamamoto, H.; Kiyoto, T.; Kotsubo, H. WO 9921849, 1999.26. Wu, X.; Mao, Y. Chin. J. Mod. Appl. Pharm. 2009, 26, 218–220.27. Breinlinger, E. C.; Cox, P. B.; Daanen, J.; Dietrich, J.; Djuric, S.; Dombrowski, A. W.; Frank, K. E.; Friedman, M. M.; Gomtsyan, A.; Li, H.-Q.; Longenecker, K.; Osuma, A.; Rowley, A. M.; Schmidt, R.; Vasudevan, A.; Wilson, N. WO 2016168641, 2016.28. Kitamura, M.; Tsukamoto, Masaki.; Bessho, Y.; Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649-6667.1. Lawrence, S. A.; Amines: Synthesis, Properties and Applications, Cambridge University Press, 2004.2. Amino Group Chemistry: From Synthesis to the Life Sciences, ed. Ricci, A. Wiley-VCH, Weinheim, 20083. SOS Science Of Synthesis: Biocatalysis in Organic Synthesis, ed. Faber, K.; Fessner, W.-D.; Turner, N. J. Thieme, 2015, vol. 1–3. ISBN: 9783131975218; ISBN: 9783131975317; ISBN: 97831319749144. Slabu, I.; Galman, J. L.; Lloyd, R. C.; Turner, N. J. ACS Catal. 2017, 7, 8263-8284, and references therein5. Höhne, M.; Bornscheuer, U. T. Application of transaminases, in Enzyme Catalysis in Organic Synthesis, ed. K. Drauz, H. Gröger and O. May, Wiley-VCH, Weinheim, 3rd edn, 2012, vol. 2, pp. 779-820.6. Mathew, S.; Yun, H. ACS Catal. 2012, 2, 993-1001.7. Reference 7-13 in chapter 1.8. Ikariya, T.; Ishii, Y.; Kawano, H.; Arai, T.; Saburi, M.; Yoshikawa, S.; Akutagawa, S. J. Chem. Soc. Chem. Commun. 1985, 922-924.9. Bunlaksananusorn, T.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2003, 42, 3941-3943.13610. F. Giacomina, A. Meetsma, L. Panella, L. Lefort, A. H. M. de Vries, J. G. de Vries, Angew. Chem. Int. Ed. 2007, 46, 1497-1500.11. Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Science 2013, 342, 1076-1080.12. Friedfeld, M. R.; Zhong, H.; Ruck, R. T.; Shevlin, M.; Chirik, P. J. Science, 2018, 360, 888-893.13. Hu, Y.; Chen, J. Li, B.; Zhang, Z.; Gridnev, I. D. Zhang, W. Angew. Chem. Int. Ed.2020, 59, 1-6.14. Chen, J.; Li, F.; Wang, F.; Hu, Y.; Zhang, Z.; Zhao, M.; Zhang, W. Org. Lett. 2019, 21, 9060-9065.15. Hua, X.-H.; Hu, X.-P. Adv. Synth. Catal. 2019, 361, 5063-5068.16. Liu, D.; Li, B.; Chen, J.; Gridnev, I. D.; Yan, D.; Zhang, W. Nat. Commun. 2020,11, 5935-5943.17. Kadyrov, R.; Riermeier, T. H.; Dingerdissen, U.; Tararov, V.; Börner, A. J. Org. Chem. 2003, 68, 4067-4070.18. Bringmann, G.; Geisler, J.-P. Synthesis 1989, 8, 608-611.19. Enders, D.; Funk, R.; Klatt, M. Raabe, G.; Hovestreydt, E. R. Angew. Chem. Int. Ed. Engl. 1993, 32, 418-421.20. Denmark, S. E.; Nicaise, O. Synlett 1993, 5, 359-361.13721. Thiam, M.; Chastrette, F. Tetrahedron Lett. 1990, 31, 1429-1432.22. Thiam, M.; Slassi, A.; Chastrette, F.; Amouroux, R. Synth. Commun. 1992, 22, 83-95. 23. Alexakis, A.; Lensen, N.; Tranchier, J.-P.; Mangeney, P. J. Org. Chem. 1992, 57, 4563-4565.24. Alexakis, A.; Lensen, N.; Mangeney, P. Tetrahedron. Lett. 1991, 32, 1171-1174.25. Albalat-Serradeil, M.; Primazot, G.; Wilhelm, D.; Vallejos, J.-C.; Vanthuyne, N.; Roussel, C. Amino Acids, 2012, 43, 687-696.26. Tian, J.-S.; Loh, T.-P. Angew. Chem. Int. Ed. 2010, 49, 8417-8420. 27. Tian, J.-S.; Loh, T.-P. Chem. Commun. 2011, 47, 5458-5460.28. Tian, J.-S.; Ng, K. W. J.; Wong, J.-R.; Loh, T.-P. Angew. Chem. Int. Ed. 2012, 51, 9105-9109.29. Zhang, Y.-X.; Zhang, A.-Q.; Tian, J.-S.; Loh, T.-P. Org. Biomol. Chem. 2013, 11, 8387-8394.30. Pan, H.; Xie, Y.; Liu, M.; Shi, Y. RSC Adv. 2014, 4, 2389-2392.31. Zhang, J.; Jia, J. Zeng, X.; Wang, Yu.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem. Int. Ed. 2019, 58, 11505-11512.32. Tokic-Vujosevic, Z.; Petrovic, G.; Rakic, B.; Matovic, R.; Saicic, R. N. Synth. Commun. 2005, 35, 435-447.1. Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 1890-1932.2. Fischer, J.; Ganellin, C. R. Analogue-based Drug Discovery; John Wiley & Sons: 2006; p 452. ISBN: 97835276074953. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307-1370.4. Brown, J. M. Angew. Chem., Int. Ed. Engl. 1987, 26, 190-203.5. Beaulieu, P.; Ogilvie, W. W. Tetrahedron Lett. 2003, 44, 8883-8885.6. Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125, 12412-124133.7. Stork, G.; Schoofs, A. R. J. Am. Chem. Soc. 1979, 101, 5081-5082.8. Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855-19699. Shao, H.; Bao, W.; Jing, Z.-R.; Wang, Y.-P.; Zhang, F.-M.; Wang, S.-H.; Tu, Y.-Q.Org. Lett. 2017, 19, 4648-4651.10. Hu, Y.-J.; Fan, J.-H.; Li, S.; Zhao, J.; Li, C.-C. Org. Lett. 2018, 20, 5905-5909.11. Wada, K.; Sakai, M.; Kawashima, H.; Ogawa, N.; Kobayashi, Y. Synlett 2016, 27, 1428-1432.12. Paterson, I.; Xuan, M.; Dalby, S. M. Angew. Chem. Int. Ed. 2014, 53, 7286-7289.13. Zhou, Y.-G.; Wong, H. N. C.; Peng, X.-S. J. Org. Chem. 2020, 85, 967-976.18114. Khatua, A.; Niyogi, S.; Bisai, V. Org. Biomol. Chem. 2019, 17, 7140-7143.15. Pàmies, O.; Bäckvall, J.-E. Chem. Rev. 2003, 103, 3247-3262.16. Nowotny, S.; Vettel, S.; Knochel, P. Tetrahedron Lett. 1994, 35, 4539-4540.17. Lussem, B. J.; Gais, H.-J. J. Am. Chem. Soc. 2003, 125, 6066-6067.18. Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986-2012.19. Velasco-Rubio, Á.; Alexy, E. J.; Yoritate, M.; Wright, A. C.; Stoltz, B. M. Org. Lett. 2019, 21, 8962-8965.20. Kuang, L.; Liu, L. L.; Chiu, P. Chem. Eur. J. 2015, 21, 14287-14291.21. Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: 2010; p 601. ISBN: 978-1-891389-53-5. 22. Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 130, 11979-11987.23. Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104-15118.24. Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466-1478.25. Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 10417-1041826. Ohkuma, T.; Doucet, H.; Pham, T.; Mikami, K.; Korenaga, T.; Terada, M.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 1086-108727. Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.;182Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1998, 120, 13529-13530.28. Arai, N.; Azuma, K.; Nii, N.; Ohkuma, T. Angew. Chem. Int. Ed. 2008, 47, 7457-7460.29. Chen, X.; Zhou, H.; Zhang, K.; Li, J.; Huang, H. Org. Lett. 2014, 16, 3912-3915.30. Zhang, Q.-Q. Xie, J.-H.; Yang, X.-H.; Xie, J.-B.; Zhou, Q.-L. Org. Lett. 2012, 14, 6158-6161.31. Chen, F.; Zhang, Y.; Yu, L.; Zhu, S. Angew. Chem. Int. Ed. 2017, 56, 2022-2025. 32. Brestensky, D. M.; Huseland, D. E.; McGettigan, C.; Stryker, J. M. Tetrahedron Lett. 1988, 29, 3749-3752.33. Baker, B. A.; Bošković, Ž. V.; Lipshutz, B. H. Org. Lett. 2008, 10, 289-292.34. Rendler, S.; Oestreich, M. Angew. Chem. Int. Ed. 2007, 46, 498-504.35. Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916-2927.36. Lipshutz, B. H. Synlett 2009, 4, 509-524.37. Chen, J.-X.; Daeuble, J. F.; Brestensky, D. M.; Stryker, J. M. Tetrahedron 2000, 56, 2153-2166.38. Chen, J.-X.; Daeuble, J. F.; Stryker, J. M. Tetrahedron 2000, 56, 2789-2798.39. Lipshutz, B. H.; Noson, K. Chrisman, W. J. Am. Chem. Soc. 2001, 123, 12917-12918.18340. Lipshutz, B. H.; Noson, K.; Chrisman, W.; Lower, A. J. Am. Chem. Soc. 2003, 125, 8779-8789.41. Zhang, X.-C.; Wu, F.-F.; Li, S.; Zhou, J.-N.; Wu, J.; Li, N.; Fang, W.; Lam, K. H.; Chan, A. S. C. Adv. Synth. Catal. 2011, 353, 1457-1462.42. Junge, K.; Wendt, B.; Addis, D.; Zhou, S.; Das, S.; Beller, M. Chem. Eur. J. 2010, 16, 68-73.43. Lia, W. J.; Qiu, S. X. Adv. Synth. Catal. 2010, 352, 1119-1122.44. Lipshutz, B. H.; Lower, A.; Noson, K. Org. Lett. 2002, 4, 4045-4048.45. Yu, F.; Zhou, J.-N.; Zhang, X.-C.; Sui, Y.-Z.; Wu, F.-F.; Xie, L.-J.; Chan, A. S. C.; Wu, J. Chem. Eur. J. 2011, 17, 14234-14240.46. Moser, R.; Bošković, Ž. V.; Crowe, C. S.; Lipshutz, B. H. J. Am. Chem. Soc. 2010, 132, 7852-7853.47. Voigtritter, K. R.; Isley, N. A.; Moser, R.; Aue, D. H.; Lipshutz, B. H. Tetrahedron2012, 68, 3410-3416.48. Bandar, J. S.; Pirnot, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 14812-14818.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/401780
专题理学院_化学系
推荐引用方式
GB/T 7714
Shi YJ. STUDIES ON TRANSITION METAL-CATALYZED ASYMMETRIC REDUCTIONS AND REDUCTIVE AMINATIONS[D]. 香港. 香港大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11850009-史永杰-化学系.pdf(10051KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[史永杰]的文章
百度学术
百度学术中相似的文章
[史永杰]的文章
必应学术
必应学术中相似的文章
[史永杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。