中文版 | English
题名

Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction

作者
通讯作者Shah, Sahil; Chen, Po-Yen
发表日期
2022-09-09
DOI
发表期刊
EISSN
2041-1723
卷号13期号:1
摘要
["Wearable sensors with edge computing are desired for human motion monitoring. Here, the authors demonstrate a topographic design for wearable MXene sensor modules with wireless streaming or in-sensor computing models for avatar reconstruction.","Wearable strain sensors that detect joint/muscle strain changes become prevalent at human-machine interfaces for full-body motion monitoring. However, most wearable devices cannot offer customizable opportunities to match the sensor characteristics with specific deformation ranges of joints/muscles, resulting in suboptimal performance. Adequate wearable strain sensor design is highly required to achieve user-designated working windows without sacrificing high sensitivity, accompanied with real-time data processing. Herein, wearable Ti3C2Tx MXene sensor modules are fabricated with in-sensor machine learning (ML) models, either functioning via wireless streaming or edge computing, for full-body motion classifications and avatar reconstruction. Through topographic design on piezoresistive nanolayers, the wearable strain sensor modules exhibited ultrahigh sensitivities within the working windows that meet all joint deformation ranges. By integrating the wearable sensors with a ML chip, an edge sensor module is fabricated, enabling in-sensor reconstruction of high-precision avatar animations that mimic continuous full-body motions with an average avatar determination error of 3.5 cm, without additional computing devices."]
相关链接[来源记录]
收录类别
语种
英语
重要成果
NI论文
学校署名
其他
资助项目
Start-Up Fund of University of Maryland, College Park[2957431] ; MOST-AFOSR Taiwan Topological and Nanostructured Materials Grant["FA2386-21-1-4065","5284212"] ; Maryland Energy Innovation Institute (MEI2) Energy Seed Grant[2957597]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:000853200800022
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:69
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402338
专题工学院_电子与电气工程系
作者单位
1.Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
3.Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
4.Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20740 USA
5.Realtek, Singapore 609930, Singapore
6.Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
7.Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20740 USA
8.Maryland Robot Ctr, College Pk, MD 20740 USA
推荐引用方式
GB/T 7714
Yang, Haitao,Li, Jiali,Xiao, Xiao,et al. Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction[J]. NATURE COMMUNICATIONS,2022,13(1).
APA
Yang, Haitao.,Li, Jiali.,Xiao, Xiao.,Wang, Jiahao.,Li, Yufei.,...&Chen, Po-Yen.(2022).Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction.NATURE COMMUNICATIONS,13(1).
MLA
Yang, Haitao,et al."Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction".NATURE COMMUNICATIONS 13.1(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Haitao]的文章
[Li, Jiali]的文章
[Xiao, Xiao]的文章
百度学术
百度学术中相似的文章
[Yang, Haitao]的文章
[Li, Jiali]的文章
[Xiao, Xiao]的文章
必应学术
必应学术中相似的文章
[Yang, Haitao]的文章
[Li, Jiali]的文章
[Xiao, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。