中文版 | English
题名

Nuclear cataract classification in anterior segment OCT based on clinical global-local features

作者
通讯作者Higashita, Risa; Liu, Jiang
发表日期
2022-09-01
DOI
发表期刊
ISSN
2199-4536
EISSN
2198-6053
卷号9期号:2
摘要
Nuclear cataract (NC) is a priority ocular disease of blindness and vision impairment globally. Early intervention and cataract surgery can improve the vision and life quality of NC patients. Anterior segment coherence tomography (AS-OCT) imaging is a non-invasive way to capture the NC opacity objectively and quantitatively. Recent clinical research has shown that there exists a strong opacity correlation relationship between NC severity levels and the mean density on AS-OCT images. In this paper, we present an effective NC classification framework on AS-OCT images, based on feature extraction and feature importance analysis. Motivated by previous clinical knowledge, our method extracts the clinical global-local features, and then applies Pearson's correlation coefficient and recursive feature elimination methods to analyze the feature importance. Finally, an ensemble logistic regression is employed to distinguish NC, which considers different optimization methods' characteristics. A dataset with 11,442 AS-OCT images is collected to evaluate the method. The results show that the proposed method achieves 86.96% accuracy and 88.70% macro-sensitivity, respectively. The performance comparison analysis also demonstrates that the global-local feature extraction method improves about 2% accuracy than the single region-based feature extraction method.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Science and Technology Innovation Committee of Shenzhen City["JCYJ20200109140820699","20200925174052004"] ; Guangdong Provincial Department of Education[2020ZDZX3043] ; Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:000854401000001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402345
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
3.Tomey Corp, Nagoya, Aichi, Japan
4.Sun Yat Sen Univ, State Key Lab Ophthalmol, Guangzhou, Peoples R China
5.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China
6.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen, Peoples R China
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位南方科技大学;  计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang, Xiaoqing,Xiao, Zunjie,Wu, Xiao,et al. Nuclear cataract classification in anterior segment OCT based on clinical global-local features[J]. Complex & Intelligent Systems,2022,9(2).
APA
Zhang, Xiaoqing.,Xiao, Zunjie.,Wu, Xiao.,Chen, Yu.,Higashita, Risa.,...&Liu, Jiang.(2022).Nuclear cataract classification in anterior segment OCT based on clinical global-local features.Complex & Intelligent Systems,9(2).
MLA
Zhang, Xiaoqing,et al."Nuclear cataract classification in anterior segment OCT based on clinical global-local features".Complex & Intelligent Systems 9.2(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Wu, Xiao]的文章
百度学术
百度学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Wu, Xiao]的文章
必应学术
必应学术中相似的文章
[Zhang, Xiaoqing]的文章
[Xiao, Zunjie]的文章
[Wu, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。