题名 | Nuclear cataract classification in anterior segment OCT based on clinical global-local features |
作者 | |
通讯作者 | Higashita, Risa; Liu, Jiang |
发表日期 | 2022-09-01
|
DOI | |
发表期刊 | |
ISSN | 2199-4536
|
EISSN | 2198-6053
|
卷号 | 9期号:2 |
摘要 | Nuclear cataract (NC) is a priority ocular disease of blindness and vision impairment globally. Early intervention and cataract surgery can improve the vision and life quality of NC patients. Anterior segment coherence tomography (AS-OCT) imaging is a non-invasive way to capture the NC opacity objectively and quantitatively. Recent clinical research has shown that there exists a strong opacity correlation relationship between NC severity levels and the mean density on AS-OCT images. In this paper, we present an effective NC classification framework on AS-OCT images, based on feature extraction and feature importance analysis. Motivated by previous clinical knowledge, our method extracts the clinical global-local features, and then applies Pearson's correlation coefficient and recursive feature elimination methods to analyze the feature importance. Finally, an ensemble logistic regression is employed to distinguish NC, which considers different optimization methods' characteristics. A dataset with 11,442 AS-OCT images is collected to evaluate the method. The results show that the proposed method achieves 86.96% accuracy and 88.70% macro-sensitivity, respectively. The performance comparison analysis also demonstrates that the global-local feature extraction method improves about 2% accuracy than the single region-based feature extraction method. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Science and Technology Innovation Committee of Shenzhen City["JCYJ20200109140820699","20200925174052004"]
; Guangdong Provincial Department of Education[2020ZDZX3043]
; Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
|
WOS记录号 | WOS:000854401000001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/402345 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China 3.Tomey Corp, Nagoya, Aichi, Japan 4.Sun Yat Sen Univ, State Key Lab Ophthalmol, Guangzhou, Peoples R China 5.Chinese Acad Sci, Cixi Inst Biomed Engn, Ningbo Inst Mat Technol & Engn, Ningbo, Peoples R China 6.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen, Peoples R China |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang, Xiaoqing,Xiao, Zunjie,Wu, Xiao,et al. Nuclear cataract classification in anterior segment OCT based on clinical global-local features[J]. Complex & Intelligent Systems,2022,9(2).
|
APA |
Zhang, Xiaoqing.,Xiao, Zunjie.,Wu, Xiao.,Chen, Yu.,Higashita, Risa.,...&Liu, Jiang.(2022).Nuclear cataract classification in anterior segment OCT based on clinical global-local features.Complex & Intelligent Systems,9(2).
|
MLA |
Zhang, Xiaoqing,et al."Nuclear cataract classification in anterior segment OCT based on clinical global-local features".Complex & Intelligent Systems 9.2(2022).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论