中文版 | English
题名

Research on Fast Recognition of Vulnerable Traffic Participants in Intelligent Connected Vehicles on Edge Computing

作者
通讯作者Lyu, Jingjing
发表日期
2022-09-01
DOI
发表期刊
ISSN
0218-1266
EISSN
1793-6454
卷号32期号:03
摘要
Real-time and fast recognition of all kinds of traffic participants in intelligent driving has always been a major difficulty in the research of internet of vehicles. With the advent of edge computing, we try to deploy an image recognition algorithm directly to the intelligent vehicles. However, the original image recognition algorithm is difficult to be directly deployed on the vehicles due to limited edge device resources. Based on this, a fast recognition model of vulnerable traffic participants based on depthwise separable convolutional neural network (DSCYOLO) is proposed in this paper. The algorithm can significantly reduce the convolutional parameter quantity and computing load, making it suitable for deployment on the vehicle-mounted edge embedded devices. In order to validate the effectiveness of the proposed method, its simulation results are compared with the main target detection models Faster R-CNN, SSD and YOLOv3. The results show that the recognition time of the proposed model is reduced by 80.28%, 66.80% and 86.74%, respectively, on the basis of a relatively high recognition precision. The model can realize real-time detection and fast recognition of vulnerable traffic participants, so as to avoid a large number of traffic accidents. It has significant social and economic benefits.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Open Project Program of the State Key Lab of CAD&CG Zhejiang University[A2117] ; Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province[MSSB-2021-06] ; Science & Technology Bureau of Chengdu[2020-YF09-00005-SN] ; Talent Cultivation Quality and Teaching Reform Project of Chengdu University in 2021-2023[cdjgb2022051] ; Second Batch of Industry-University Cooperation, Project of Sichuan Research Center for Application and Development of Educational Informatization in 2021[JYXX21-004] ; Project of Urban and Rural Education Development Research Center in 2021[TCCXJY-2021-E46]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Hardware & Architecture ; Engineering, Electrical & Electronic
WOS记录号
WOS:000852447300004
出版者
EI入藏号
20230713583178
EI主题词
Convolution ; Edge computing ; Edge detection ; Image recognition ; Neural networks
EI分类号
Information Theory and Signal Processing:716.1 ; Digital Computers and Systems:722.4
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402368
专题理学院_数学系
作者单位
1.Chengdu Univ, Coll Comp Sci, Chengdu, Peoples R China
2.Chengdu Univ, Inst Higher Educ Sichuan Prov, Key Lab Pattern Recognit & Intelligent Informat P, Chengdu, Peoples R China
3.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Gu, Musong,Lyu, Jingjing,Li, Zhongwen,et al. Research on Fast Recognition of Vulnerable Traffic Participants in Intelligent Connected Vehicles on Edge Computing[J]. JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS,2022,32(03).
APA
Gu, Musong,Lyu, Jingjing,Li, Zhongwen,Yan, Zihan,&Fan, Wenjie.(2022).Research on Fast Recognition of Vulnerable Traffic Participants in Intelligent Connected Vehicles on Edge Computing.JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS,32(03).
MLA
Gu, Musong,et al."Research on Fast Recognition of Vulnerable Traffic Participants in Intelligent Connected Vehicles on Edge Computing".JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS 32.03(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gu, Musong]的文章
[Lyu, Jingjing]的文章
[Li, Zhongwen]的文章
百度学术
百度学术中相似的文章
[Gu, Musong]的文章
[Lyu, Jingjing]的文章
[Li, Zhongwen]的文章
必应学术
必应学术中相似的文章
[Gu, Musong]的文章
[Lyu, Jingjing]的文章
[Li, Zhongwen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。