中文版 | English
题名

A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking

作者
通讯作者Fu, Chenglong
发表日期
2023-03-01
DOI
发表期刊
ISSN
0263-5747
EISSN
1469-8668
卷号41期号:3页码:1039-1054
摘要

In dynamic outdoor environments characterized by turbulent airflow and intermittent odor plumes, robotic odor plume tracking remains challenging, because existing algorithms heavily rely on manually tuning or learning from expert experience, which are hard to implement in an unknown environment. In this paper, a multi-continuous-output Takagi-Sugeno-Kang fuzzy system was designed and tuned with reinforcement learning to solve the robotic odor source localization problem in dynamic odor plumes. Based on the Levy Taxis plume tracking controller, the proposed fuzzy system determined the parameters of the controller based on the robot's observation and guided the robot to turn and move towards the odor source at each searching step. The trained fuzzy system was tested in simulated filament-based odor plumes dispersed by a changing wind field. The results showed that the performance of the proposed fuzzy system-based controller trained with reinforcement learning can achieve a similar success rate and higher efficiency compared with a manually tuned and well-designed fuzzy system-based controller. The fuzzy system-based plume tracking controller was also validated through real robotic experiments.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[
WOS研究方向
Robotics
WOS类目
Robotics
WOS记录号
WOS:000854929800001
出版者
EI入藏号
20230713599380
EI主题词
Air ; Controllers ; Electronic nose ; Fuzzy inference ; Fuzzy systems ; Learning systems ; Odors ; Robotics
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1 ; Artificial Intelligence:723.4 ; Expert Systems:723.4.1 ; Robotics:731.5 ; Control Equipment:732.1 ; Chemistry:801 ; Chemical Products Generally:804 ; Electric and Electronic Instruments:942.1 ; Systems Science:961
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85148001261
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402370
专题南方科技大学
作者单位
1.Shenzhen Key Lab Biomimet Robot & Intelligent Sys, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil, Shenzhen 518055, Peoples R China
3.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen, Xinxing,Yang, Bo,Huang, Jian,et al. A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking[J]. ROBOTICA,2023,41(3):1039-1054.
APA
Chen, Xinxing,Yang, Bo,Huang, Jian,Leng, Yuquan,&Fu, Chenglong.(2023).A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking.ROBOTICA,41(3),1039-1054.
MLA
Chen, Xinxing,et al."A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking".ROBOTICA 41.3(2023):1039-1054.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2023 Robotica A-rein(1133KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Xinxing]的文章
[Yang, Bo]的文章
[Huang, Jian]的文章
百度学术
百度学术中相似的文章
[Chen, Xinxing]的文章
[Yang, Bo]的文章
[Huang, Jian]的文章
必应学术
必应学术中相似的文章
[Chen, Xinxing]的文章
[Yang, Bo]的文章
[Huang, Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。