题名 | A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking |
作者 | |
通讯作者 | Fu, Chenglong |
发表日期 | 2023-03-01
|
DOI | |
发表期刊 | |
ISSN | 0263-5747
|
EISSN | 1469-8668
|
卷号 | 41期号:3页码:1039-1054 |
摘要 | In dynamic outdoor environments characterized by turbulent airflow and intermittent odor plumes, robotic odor plume tracking remains challenging, because existing algorithms heavily rely on manually tuning or learning from expert experience, which are hard to implement in an unknown environment. In this paper, a multi-continuous-output Takagi-Sugeno-Kang fuzzy system was designed and tuned with reinforcement learning to solve the robotic odor source localization problem in dynamic odor plumes. Based on the Levy Taxis plume tracking controller, the proposed fuzzy system determined the parameters of the controller based on the robot's observation and guided the robot to turn and move towards the odor source at each searching step. The trained fuzzy system was tested in simulated filament-based odor plumes dispersed by a changing wind field. The results showed that the performance of the proposed fuzzy system-based controller trained with reinforcement learning can achieve a similar success rate and higher efficiency compared with a manually tuned and well-designed fuzzy system-based controller. The fuzzy system-based plume tracking controller was also validated through real robotic experiments. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China[
|
WOS研究方向 | Robotics
|
WOS类目 | Robotics
|
WOS记录号 | WOS:000854929800001
|
出版者 | |
EI入藏号 | 20230713599380
|
EI主题词 | Air
; Controllers
; Electronic nose
; Fuzzy inference
; Fuzzy systems
; Learning systems
; Odors
; Robotics
|
EI分类号 | Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Artificial Intelligence:723.4
; Expert Systems:723.4.1
; Robotics:731.5
; Control Equipment:732.1
; Chemistry:801
; Chemical Products Generally:804
; Electric and Electronic Instruments:942.1
; Systems Science:961
|
ESI学科分类 | ENGINEERING
|
Scopus记录号 | 2-s2.0-85148001261
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/402370 |
专题 | 南方科技大学 |
作者单位 | 1.Shenzhen Key Lab Biomimet Robot & Intelligent Sys, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat & Rehabil, Shenzhen 518055, Peoples R China 3.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan 430074, Peoples R China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen, Xinxing,Yang, Bo,Huang, Jian,et al. A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking[J]. ROBOTICA,2023,41(3):1039-1054.
|
APA |
Chen, Xinxing,Yang, Bo,Huang, Jian,Leng, Yuquan,&Fu, Chenglong.(2023).A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking.ROBOTICA,41(3),1039-1054.
|
MLA |
Chen, Xinxing,et al."A reinforcement learning fuzzy system for continuous control in robotic odor plume tracking".ROBOTICA 41.3(2023):1039-1054.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2023 Robotica A-rein(1133KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论