中文版 | English
题名

Learning Linear and Nonlinear Low-Rank Structure in Multi-Task Learning

作者
发表日期
2022
DOI
发表期刊
ISSN
1041-4347
EISSN
1558-2191
卷号PP期号:99页码:1-12
摘要

As the trace norm can discover low-rank structures in a matrix, it has been widely used in multi-task learning to recover the low-rank structure contained in the parameter matrix. Recently, with the emerging of big complex datasets and the popularity of deep learning techniques, tensor trace norms have been used for deep multi-task models. However, existing tensor trace norms exhibit some limitations. For example, they cannot discover all the low-rank structures in a tensor, they require users to manually specify the importance of each component in the corresponding tensor trace norm, and they only capture the linear low-rank structure. To solve the first issue, in this paper, we propose a Generalized Tensor Trace Norm (GTTN). The GTTN is defined as a convex combination of matrix trace norms of all possible tensor flattenings and hence it can discover all the possible low-rank structures. For the second issue, in the induced objective function with the GTTN, we propose four strategies to learn combination coefficients in the GTTN. Furthermore, we propose the Nonlinear GTTN (NGTTN) to capture nonlinear low-rank structure among all the tasks. Experiments on benchmark datasets demonstrate the effectiveness of the proposed GTTN and NGTTN.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
EI入藏号
20223812754010
EI主题词
Deep Learning ; Job Analysis ; Matrix Algebra ; Neural Networks
EI分类号
Ergonomics And Human Factors Engineering:461.4 ; Algebra:921.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85137905337
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9875058
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402402
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, China
2.Department of Computer Science and Engineering and Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China
3.National Key Laboratory for Novel Software Technology, Nanjing University, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhang,Yi,Zhang,Yu,Wang,Wei. Learning Linear and Nonlinear Low-Rank Structure in Multi-Task Learning[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2022,PP(99):1-12.
APA
Zhang,Yi,Zhang,Yu,&Wang,Wei.(2022).Learning Linear and Nonlinear Low-Rank Structure in Multi-Task Learning.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,PP(99),1-12.
MLA
Zhang,Yi,et al."Learning Linear and Nonlinear Low-Rank Structure in Multi-Task Learning".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING PP.99(2022):1-12.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Yi]的文章
[Zhang,Yu]的文章
[Wang,Wei]的文章
百度学术
百度学术中相似的文章
[Zhang,Yi]的文章
[Zhang,Yu]的文章
[Wang,Wei]的文章
必应学术
必应学术中相似的文章
[Zhang,Yi]的文章
[Zhang,Yu]的文章
[Wang,Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。