中文版 | English
题名

A fast sampling based evolutionary algorithm for million-dimensional multiobjective optimization

作者
通讯作者He,Cheng
发表日期
2022-12-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号75
摘要
With their complexity and vast search space, large-scale multiobjective optimization problems (LSMOPs) challenge existing multiobjective evolutionary algorithms (MOEAs). Recently, several large-scale multiobjective evolutionary algorithms have been developed to tackle LSMOPs. Unlike conventional MOEAs that concentrate on selection operations in the objective space, large-scale MOEAs emphasize operations in the decision space, such as offspring generation, to tackle the large number of decision variables. Nevertheless, most present large-scale MOEAs experience difficulty effectively and efficiently solving LSMOPs with tens of thousands or more decision variables or exhibit poor versatility in solving different LSMOPs. We propose a fast large-scale MOEA framework with reference-guided offspring generation, named FLEA, aiming at these issues. Generally, FLEA constructs several reference vectors in the decision space to steer the sampling of promising solutions during offspring generation. A parameter is used to allocate computation resources between the convergence and diversity of the offspring population adaptively. Without computationally expensive problem reformulation or decision variable analysis techniques, the proposed method can significantly accelerate the search speed of conventional MOEAs in solving LSMOPs. FLEA is examined on various LSMOPs with up to 1.6 million decision variables, demonstrating its superior effectiveness, efficiency, and versatility in large-scale multiobjective optimization.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61772214];National Natural Science Foundation of China[61903178];National Natural Science Foundation of China[61906081];Fundamental Research Funds for the Central Universities[HUST: 2021JYCXJJ039];National Natural Science Foundation of China[U20A20306];
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000876310100010
出版者
Scopus记录号
2-s2.0-85138805013
来源库
Scopus
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402633
专题工学院_计算机科学与工程系
作者单位
1.Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan,430074,China
2.School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan,430074,China
3.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Faculty of Technology,Bielefeld University,Bielefeld,33619,Germany
推荐引用方式
GB/T 7714
Li,Lianghao,He,Cheng,Cheng,Ran,et al. A fast sampling based evolutionary algorithm for million-dimensional multiobjective optimization[J]. Swarm and Evolutionary Computation,2022,75.
APA
Li,Lianghao,He,Cheng,Cheng,Ran,Li,Hongbin,Pan,Linqiang,&Jin,Yaochu.(2022).A fast sampling based evolutionary algorithm for million-dimensional multiobjective optimization.Swarm and Evolutionary Computation,75.
MLA
Li,Lianghao,et al."A fast sampling based evolutionary algorithm for million-dimensional multiobjective optimization".Swarm and Evolutionary Computation 75(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Lianghao]的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
百度学术
百度学术中相似的文章
[Li,Lianghao]的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
必应学术
必应学术中相似的文章
[Li,Lianghao]的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。