中文版 | English
题名

Spatio-temporally varying Strickler coefficient: A calibration approach applied to a Danish river using in-situ water surface elevation and UAS altimetry

作者
通讯作者Liu,Jun
发表日期
2022-10-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号613
摘要
Hydraulic roughness (e.g., expressed in terms of Manning's or Strickler's coefficient) is an essential input to numerical hydrodynamic models. One way to estimate roughness parameters is by hydraulic inversion, using observed water surface elevation (WSE) collected from gauging stations, satellite platforms, or Unmanned Aerial System (UAS) altimeters. Specifically, UAS altimetry provides close to instantaneous observations of longitudinal profiles and seasonal variations of WSE for various river types, which are helpful for calibrating roughness parameters. However, it is computationally expensive to run high-resolution hydrodynamic models thousands to millions of times as required for the global optimization of distributed parameter sets (e.g., spatio-temporally varying river roughness). This study presents an efficient calibration approach for hydrodynamic models using a simplified steady-state hydraulic solver, UAS altimetry datasets, and in-situ observations. The calibration approach minimized the weighted sum of a misfit term, spatial smoothness penalty, and an a-priori sinusoidal temporal variation constraint. The approach was first demonstrated for several synthetic calibration experiments, and the results indicated that the global search algorithm accurately recovered the variations of Strickler coefficient (K) for short river reaches in temporal (due to the seasonal growth cycle of the aquatic vegetation) and spatial (e.g., due to spatially variable density of submerged vegetation) scales. Subsequently, the calibration approach was demonstrated for a real WSE dataset collected at a Danish test site (Vejle Å). In this river, friction is dominated by submerged vegetation growing in the stream and shows strong seasonal and longitudinal variations due to the plant growth cycle and variable vegetation density and species composition. Results indicated that spatio-temporal variation of K was required to fit in-situ observations and UAS altimetry accurately. This study illustrates how UAS altimetry and hydrodynamic modeling can be combined to achieve an improved understanding and better parameterization of small and medium-sized rivers, where river channel conveyance is controlled by vegetation growth and other spatio-temporally variable factors.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Key Research and Development Program of China[2018YFE0106500];Innovationsfonden[7048-00001B];
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000862190400002
出版者
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85138455890
来源库
Scopus
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402671
专题工学院_环境科学与工程学院
作者单位
1.Department of Environmental Engineering,Technical University of Denmark,Kgs. Lyngby,2800,Denmark
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,China
3.DHI-GRAS,Hørsholm,2970,Denmark
4.DHI A/S,Hørsholm,Agern Allé 5,2970,Denmark
5.Dronesystems,Finlandsgade 25F,Denmark
推荐引用方式
GB/T 7714
Liu,Jun,Jiang,Liguang,Bandini,Filippo,et al. Spatio-temporally varying Strickler coefficient: A calibration approach applied to a Danish river using in-situ water surface elevation and UAS altimetry[J]. JOURNAL OF HYDROLOGY,2022,613.
APA
Liu,Jun.,Jiang,Liguang.,Bandini,Filippo.,Kittel,Cecile M.M..,Balbarini,Nicola.,...&Bauer-Gottwein,Peter.(2022).Spatio-temporally varying Strickler coefficient: A calibration approach applied to a Danish river using in-situ water surface elevation and UAS altimetry.JOURNAL OF HYDROLOGY,613.
MLA
Liu,Jun,et al."Spatio-temporally varying Strickler coefficient: A calibration approach applied to a Danish river using in-situ water surface elevation and UAS altimetry".JOURNAL OF HYDROLOGY 613(2022).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Jun]的文章
[Jiang,Liguang]的文章
[Bandini,Filippo]的文章
百度学术
百度学术中相似的文章
[Liu,Jun]的文章
[Jiang,Liguang]的文章
[Bandini,Filippo]的文章
必应学术
必应学术中相似的文章
[Liu,Jun]的文章
[Jiang,Liguang]的文章
[Bandini,Filippo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。