中文版 | English
题名

Finding top-K solutions for the decision-maker in multiobjective optimization

作者
通讯作者Luo,Wenjian
发表日期
2022-10-01
DOI
发表期刊
ISSN
0020-0255
EISSN
1872-6291
卷号613页码:204-227
摘要
Multiobjective optimization problems (MOPs) are the optimization problem with multiple conflicting objectives. Generally, an optimization algorithm can find a large number of optimal solutions for MOPs, which easily overwhelm decision makers (DMs) and make it difficult for decision-making. Preference-based evolutionary multiobjective optimization (EMO) aims to find the partial optima in the regions preferred by the DM. Although it narrows the scope of the optimal solutions, it usually still returns a population of optimal solutions (typically 100 or larger in EMO) with a small distance between adjacent optima. Top-K, which is a well-established research subject in many fields to find the best K solutions, may be a direction to reduce the number of optimal solutions. In this paper, first, we introduce the top-K notion into preference-based EMO and propose the top-K model to obtain the best K individuals of multiobjective optimization problems (MOPs). Then, with the top-K model, we propose NSGA-II-TopK and SPEA2-TopK to search for the top-K preferred solutions for preference-based continuous and combinatorial MOPs, respectively. Finally, the proposed algorithms with several representative preference-based EMO algorithms are compared in different preference situations for MOPs. Experimental results show the proposed algorithms have strong performances against the compared algorithms.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61573327] ; EPSRC["EP/J017515/1","EP/P005578/1"] ; Program for Guangdong Introducing Innovative and Enterpreneurial Teams[2017ZT07X386] ; Shenzhen Peacock Plan[KQTD2016112514355531] ; Science and Technology Innovation Committee Foundation of Shenzhen[ZDSYS201703031748284] ; Program for University Key Laboratory of Guangdong Province[2017KSYS008]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems
WOS记录号
WOS:000860651600010
出版者
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85138453320
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402672
专题工学院_计算机科学与工程系
作者单位
1.School of Computer Science and Technology,Harbin Institute of Technology,Shenzhen,Guangdong,518055,China
2.School of Computer Science and Technology,University of Science and Technology of China,Hefei,Anhui,230027,China
3.Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA),School of Computer Science,University of Birmingham,United Kingdom
4.Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
5.CERCIA,School of Computer Science,University of Birmingham,United Kingdom
推荐引用方式
GB/T 7714
Luo,Wenjian,Shi,Luming,Lin,Xin,et al. Finding top-K solutions for the decision-maker in multiobjective optimization[J]. INFORMATION SCIENCES,2022,613:204-227.
APA
Luo,Wenjian,Shi,Luming,Lin,Xin,Zhang,Jiajia,Li,Miqing,&Yao,Xin.(2022).Finding top-K solutions for the decision-maker in multiobjective optimization.INFORMATION SCIENCES,613,204-227.
MLA
Luo,Wenjian,et al."Finding top-K solutions for the decision-maker in multiobjective optimization".INFORMATION SCIENCES 613(2022):204-227.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Luo,Wenjian]的文章
[Shi,Luming]的文章
[Lin,Xin]的文章
百度学术
百度学术中相似的文章
[Luo,Wenjian]的文章
[Shi,Luming]的文章
[Lin,Xin]的文章
必应学术
必应学术中相似的文章
[Luo,Wenjian]的文章
[Shi,Luming]的文章
[Lin,Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。