题名 | Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction of Lung Nodules on CT Scans |
作者 | |
通讯作者 | Liu,Jiang |
DOI | |
发表日期 | 2022
|
会议名称 | 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16430-9
|
会议录名称 | |
卷号 | 13431 LNCS
|
页码 | 484-494
|
会议日期 | SEP 18-22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | In the management of lung nodules, we are desirable to predict nodule evolution in terms of its diameter variation on Computed Tomography (CT) scans and then provide a follow-up recommendation according to the predicted result of the growing trend of the nodule. In order to improve the performance of growth trend prediction for lung nodules, it is vital to compare the changes of the same nodule in consecutive CT scans. Motivated by this, we screened out 4,666 subjects with more than two consecutive CT scans from the National Lung Screening Trial (NLST) dataset to organize a temporal dataset called NLSTt. In specific, we first detect and pair regions of interest (ROIs) covering the same nodule based on registered CT scans. After that, we predict the texture category and diameter size of the nodules through models. Last, we annotate the evolution class of each nodule according to its changes in diameter. Based on the built NLSTt dataset, we propose a siamese encoder to simultaneously exploit the discriminative features of 3D ROIs detected from consecutive CT scans. Then we novelly design a spatial-temporal mixer (STM) to leverage the interval changes of the same nodule in sequential 3D ROIs and capture spatial dependencies of nodule regions and the current 3D ROI. According to the clinical diagnosis routine, we employ hierarchical loss to pay more attention to growing nodules. The extensive experiments on our organized dataset demonstrate the advantage of our proposed method. We also conduct experiments on an in-house dataset to evaluate the clinical utility of our method by comparing it against skilled clinicians. STM code and NLSTt dataset are available at https://github.com/liaw05/STMixer. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Provincial Department of Education[2020ZDZX3043]
|
WOS研究方向 | Computer Science
; Neurosciences & Neurology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Neuroimaging
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000867524300046
|
Scopus记录号 | 2-s2.0-85138797394
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/402743 |
专题 | 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.School of Computer Science and Technology,Harbin Institute of Technology,Harbin,China 2.CVTE Research,Guangzhou,China 3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China 4.School of Computer,Guangdong University of Technology,Guangzhou,China 5.Yibicom Health Management Center,CVTE,Guangzhou,China |
第一作者单位 | 斯发基斯可信自主系统研究院 |
通讯作者单位 | 斯发基斯可信自主系统研究院 |
推荐引用方式 GB/T 7714 |
Fang,Jiansheng,Wang,Jingwen,Li,Anwei,et al. Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction of Lung Nodules on CT Scans[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:484-494.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论