中文版 | English
题名

Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction of Lung Nodules on CT Scans

作者
通讯作者Liu,Jiang
DOI
发表日期
2022
会议名称
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16430-9
会议录名称
卷号
13431 LNCS
页码
484-494
会议日期
SEP 18-22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
In the management of lung nodules, we are desirable to predict nodule evolution in terms of its diameter variation on Computed Tomography (CT) scans and then provide a follow-up recommendation according to the predicted result of the growing trend of the nodule. In order to improve the performance of growth trend prediction for lung nodules, it is vital to compare the changes of the same nodule in consecutive CT scans. Motivated by this, we screened out 4,666 subjects with more than two consecutive CT scans from the National Lung Screening Trial (NLST) dataset to organize a temporal dataset called NLSTt. In specific, we first detect and pair regions of interest (ROIs) covering the same nodule based on registered CT scans. After that, we predict the texture category and diameter size of the nodules through models. Last, we annotate the evolution class of each nodule according to its changes in diameter. Based on the built NLSTt dataset, we propose a siamese encoder to simultaneously exploit the discriminative features of 3D ROIs detected from consecutive CT scans. Then we novelly design a spatial-temporal mixer (STM) to leverage the interval changes of the same nodule in sequential 3D ROIs and capture spatial dependencies of nodule regions and the current 3D ROI. According to the clinical diagnosis routine, we employ hierarchical loss to pay more attention to growing nodules. The extensive experiments on our organized dataset demonstrate the advantage of our proposed method. We also conduct experiments on an in-house dataset to evaluate the clinical utility of our method by comparing it against skilled clinicians. STM code and NLSTt dataset are available at https://github.com/liaw05/STMixer.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Provincial Department of Education[2020ZDZX3043]
WOS研究方向
Computer Science ; Neurosciences & Neurology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Interdisciplinary Applications ; Neuroimaging ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000867524300046
Scopus记录号
2-s2.0-85138797394
来源库
Scopus
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402743
专题工学院_斯发基斯可信自主研究院
作者单位
1.School of Computer Science and Technology,Harbin Institute of Technology,Harbin,China
2.CVTE Research,Guangzhou,China
3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,China
4.School of Computer,Guangdong University of Technology,Guangzhou,China
5.Yibicom Health Management Center,CVTE,Guangzhou,China
第一作者单位斯发基斯可信自主系统研究院
通讯作者单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Fang,Jiansheng,Wang,Jingwen,Li,Anwei,et al. Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction of Lung Nodules on CT Scans[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:484-494.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fang,Jiansheng]的文章
[Wang,Jingwen]的文章
[Li,Anwei]的文章
百度学术
百度学术中相似的文章
[Fang,Jiansheng]的文章
[Wang,Jingwen]的文章
[Li,Anwei]的文章
必应学术
必应学术中相似的文章
[Fang,Jiansheng]的文章
[Wang,Jingwen]的文章
[Li,Anwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。