中文版 | English
题名

Pathological Image Contrastive Self-supervised Learning

作者
通讯作者Luo,Lin
DOI
发表日期
2022
会议名称
1st International Workshop on Resource-Efficient Medical Image Analysis (REMIA) / 25th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-16875-8
会议录名称
卷号
13543 LNCS
页码
85-94
会议日期
SEP 22, 2022
会议地点
null,Singapore,SINGAPORE
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Self-supervised learning methods have been receiving wide attentions in recent years, where contrastive learning starts to show encouraging performance in many tasks in the field of computer vision. Contrastive learning methods build pre-training weight parameters by crafting positive/negative samples and optimizing their distance in the feature space. It is easy to construct positive/negative samples on natural images, but the methods cannot directly apply to histopathological images because of the unique characteristics of the images such as staining invariance and vertical flip invariance. This paper proposes a general method for constructing clinical-equivalent positive sample pairs on histopathological images for applying contrastive learning on histopathological images. Results on the PatchCamelyon benchmark show that our method can improve model accuracy up to 6% while reducing the training costs, as well as reducing reliance on labeled data.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Foundation of Shenzhen Science and Technology Innovation Committee[JCYJ20180507181527806]
WOS研究方向
Computer Science ; Pathology ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Pathology ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000869764400009
Scopus记录号
2-s2.0-85138783901
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402747
专题南方科技大学
工学院
作者单位
1.College of Engineering,Peking University,Beijing,China
2.Beijing Institute of Collaborative Innovation,Beijing,China
3.Southern University of Science and Technology,Shenzhen,China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Qin,Wenkang,Jiang,Shan,Luo,Lin. Pathological Image Contrastive Self-supervised Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:85-94.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qin,Wenkang]的文章
[Jiang,Shan]的文章
[Luo,Lin]的文章
百度学术
百度学术中相似的文章
[Qin,Wenkang]的文章
[Jiang,Shan]的文章
[Luo,Lin]的文章
必应学术
必应学术中相似的文章
[Qin,Wenkang]的文章
[Jiang,Shan]的文章
[Luo,Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。