题名 | Pathological Image Contrastive Self-supervised Learning |
作者 | |
通讯作者 | Luo,Lin |
DOI | |
发表日期 | 2022
|
会议名称 | 1st International Workshop on Resource-Efficient Medical Image Analysis (REMIA) / 25th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-16875-8
|
会议录名称 | |
卷号 | 13543 LNCS
|
页码 | 85-94
|
会议日期 | SEP 22, 2022
|
会议地点 | null,Singapore,SINGAPORE
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Self-supervised learning methods have been receiving wide attentions in recent years, where contrastive learning starts to show encouraging performance in many tasks in the field of computer vision. Contrastive learning methods build pre-training weight parameters by crafting positive/negative samples and optimizing their distance in the feature space. It is easy to construct positive/negative samples on natural images, but the methods cannot directly apply to histopathological images because of the unique characteristics of the images such as staining invariance and vertical flip invariance. This paper proposes a general method for constructing clinical-equivalent positive sample pairs on histopathological images for applying contrastive learning on histopathological images. Results on the PatchCamelyon benchmark show that our method can improve model accuracy up to 6% while reducing the training costs, as well as reducing reliance on labeled data. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Foundation of Shenzhen Science and Technology Innovation Committee[JCYJ20180507181527806]
|
WOS研究方向 | Computer Science
; Pathology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Pathology
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000869764400009
|
Scopus记录号 | 2-s2.0-85138783901
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/402747 |
专题 | 南方科技大学 工学院 |
作者单位 | 1.College of Engineering,Peking University,Beijing,China 2.Beijing Institute of Collaborative Innovation,Beijing,China 3.Southern University of Science and Technology,Shenzhen,China |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Qin,Wenkang,Jiang,Shan,Luo,Lin. Pathological Image Contrastive Self-supervised Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:85-94.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论