中文版 | English
题名

Towards Robust Uncertainty Estimation in the Presence of Noisy Labels

作者
通讯作者Pan,Chao
DOI
发表日期
2022
会议名称
31st International Conference on Artificial Neural Networks (ICANN)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-15918-3
会议录名称
卷号
13529 LNCS
页码
673-684
会议日期
SEP 06-09, 2022
会议地点
Univ W England,Bristol,ENGLAND
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
In security-critical applications, it is essential to know how confident the model is in its predictions. Many uncertainty estimation methods have been proposed recently, and these methods are reliable when the training data do not contain labeling errors. However, we find that the quality of these uncertainty estimation methods decreases dramatically when noisy labels are present in the training data. In some datasets, the uncertainty estimates would become completely absurd, even though these labeling noises barely affect the test accuracy. We further analyze the impact of existing label noise handling methods on the reliability of uncertainty estimates, although most of these methods focus only on improving the accuracy of the models. We identify that the data cleaning-based approach can alleviate the influence of label noise on uncertainty estimates to some extent, but there are still some drawbacks. Finally, we propose a robust uncertainty estimation method under label noise. Compared with other algorithms, our approach achieves a more reliable uncertainty estimates in the presence of noisy labels, especially when there are large-scale labeling errors in the training data.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000866210600056
Scopus记录号
2-s2.0-85138766849
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402751
专题工学院_计算机科学与工程系
作者单位
1.Research Institute of Trustworthy Autonomous System,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China
3.Trustworthiness Theory Research Center,Huawei Technology Co.,Ltd.,Shenzhen,China
第一作者单位南方科技大学;  计算机科学与工程系
通讯作者单位南方科技大学;  计算机科学与工程系
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Pan,Chao,Yuan,Bo,Zhou,Wei,et al. Towards Robust Uncertainty Estimation in the Presence of Noisy Labels[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:673-684.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pan,Chao]的文章
[Yuan,Bo]的文章
[Zhou,Wei]的文章
百度学术
百度学术中相似的文章
[Pan,Chao]的文章
[Yuan,Bo]的文章
[Zhou,Wei]的文章
必应学术
必应学术中相似的文章
[Pan,Chao]的文章
[Yuan,Bo]的文章
[Zhou,Wei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。