题名 | Towards Robust Uncertainty Estimation in the Presence of Noisy Labels |
作者 | |
通讯作者 | Pan,Chao |
DOI | |
发表日期 | 2022
|
会议名称 | 31st International Conference on Artificial Neural Networks (ICANN)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-15918-3
|
会议录名称 | |
卷号 | 13529 LNCS
|
页码 | 673-684
|
会议日期 | SEP 06-09, 2022
|
会议地点 | Univ W England,Bristol,ENGLAND
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | In security-critical applications, it is essential to know how confident the model is in its predictions. Many uncertainty estimation methods have been proposed recently, and these methods are reliable when the training data do not contain labeling errors. However, we find that the quality of these uncertainty estimation methods decreases dramatically when noisy labels are present in the training data. In some datasets, the uncertainty estimates would become completely absurd, even though these labeling noises barely affect the test accuracy. We further analyze the impact of existing label noise handling methods on the reliability of uncertainty estimates, although most of these methods focus only on improving the accuracy of the models. We identify that the data cleaning-based approach can alleviate the influence of label noise on uncertainty estimates to some extent, but there are still some drawbacks. Finally, we propose a robust uncertainty estimation method under label noise. Compared with other algorithms, our approach achieves a more reliable uncertainty estimates in the presence of noisy labels, especially when there are large-scale labeling errors in the training data. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000866210600056
|
Scopus记录号 | 2-s2.0-85138766849
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/402751 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Research Institute of Trustworthy Autonomous System,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,518055,China 3.Trustworthiness Theory Research Center,Huawei Technology Co.,Ltd.,Shenzhen,China |
第一作者单位 | 南方科技大学; 计算机科学与工程系 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Pan,Chao,Yuan,Bo,Zhou,Wei,et al. Towards Robust Uncertainty Estimation in the Presence of Noisy Labels[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022:673-684.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论