中文版 | English
题名

Evolutionary Multi-Objective Multi-Tasking for Fuzzy Genetics-Based Machine Learning in Multi-Label Classification

作者
DOI
发表日期
2022
会议名称
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) / IEEE World Congress on Computational Intelligence (IEEE WCCI) / International Joint Conference on Neural Networks (IJCNN) / IEEE Congress on Evolutionary Computation (IEEE CEC)
ISSN
1098-7584
ISBN
978-1-6654-6711-7
会议录名称
卷号
2022-July
页码
1-8
会议日期
JUL 18-23, 2022
会议地点
null,Padua,ITALY
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Explainable artificial intelligence (XAI) is an important research topic in the field of machine learning. A fuzzy rule-based classifier is a promising XAI technique thanks to its high interpretability. We can linguistically explain its classification result because a set of linguistically explainable fuzzy if-then rules are used for classification. In real-world data mining applications, multiple class labels are assigned to a single instance. Such a dataset is called a multi-label dataset (MLD). For MLDs, multiobjective fuzzy genetics-based machine learning for multi-label classification (MoFGBMLML) has been proposed. MoFGBMLML aims to search for explainable fuzzy classifiers by explicitly considering the accuracy-complexity tradeoff that exists in explainable classifier design. In the field of multi-label classification, different accuracy metrics have been proposed to evaluate classifier performance. As a result, different multiobjective optimization problems (MOPs) can be defined using each accuracy metric together with a complexity metric. Usually, MoFGBMLML solves each MOP independently. In this paper, we incorporate the idea of multi-tasking optimization into MoFGBMLML so that multiple MOPs are solved simultaneously. We also propose a new information sharing method to improve the effectiveness of multi-tasking optimization in MoFGBMLML. Our experimental results show that multiple accuracy metrics can be simultaneously optimized through the multi-tasking optimization framework and the proposed information sharing method improves the classification accuracy of fuzzy classifiers obtained by MoFGBMLML.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Japan Society for the Promotion of Science (JSPS) KAKENHI[JP19K12159]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:000861288500067
Scopus记录号
2-s2.0-85138756774
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9882681
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402754
专题工学院_计算机科学与工程系
作者单位
1.Osaka Prefecture University,Graduate School of Engineering,Osaka,Japan
2.Osaka Metropolitan University,Graduate School of Informatics,Osaka,Japan
3.Southern University of Science and Technology,Department of Computer Science and Engineering,Shenzhen,China
推荐引用方式
GB/T 7714
Omozaki,Yuichi,Masuyama,Naoki,Nojima,Yusuke,et al. Evolutionary Multi-Objective Multi-Tasking for Fuzzy Genetics-Based Machine Learning in Multi-Label Classification[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2022:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Omozaki,Yuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
百度学术
百度学术中相似的文章
[Omozaki,Yuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
必应学术
必应学术中相似的文章
[Omozaki,Yuichi]的文章
[Masuyama,Naoki]的文章
[Nojima,Yusuke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。