题名 | Multi‐objective evolutionary optimization for hardware‐aware neural network pruning |
作者 | |
通讯作者 | Tang,Ke |
发表日期 | 2022
|
DOI | |
发表期刊 | |
EISSN | 2667-3258
|
摘要 | Neural network pruning is a popular approach to reducing the computational complexity of deep neural networks. In recent years, as growing evidence shows that conventional network pruning methods employ inappropriate proxy metrics, and as new types of hardware become increasingly available, hardware-aware network pruning that incorporates hardware characteristics in the loop of network pruning has gained growing attention. Both network accuracy and hardware efficiency (latency, memory consumption, etc.) are critical objectives to the success of network pruning, but the conflict between the multiple objectives makes it impossible to find a single optimal solution. Previous studies mostly convert the hardware-aware network pruning to optimization problems with a single objective. In this paper, we propose to solve the hardware-aware network pruning problem with Multi-Objective Evolutionary Algorithms (MOEAs). Specifically, we formulate the problem as a multi-objective optimization problem, and propose a novel memetic MOEA, namely HAMP, that combines an efficient portfolio-based selection and a surrogate-assisted local search, to solve it. Empirical studies demonstrate the potential of MOEAs in providing simultaneously a set of alternative solutions and the superiority of HAMP compared to the state-of-the-art hardware-aware network pruning method. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Natural Science Foundation of China[62106098]
|
Scopus记录号 | 2-s2.0-85138560972
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/402769 |
专题 | 工学院_计算机科学与工程系 理学院_统计与数据科学系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,Shenzhen,518055,China 3.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Hong,Wenjing,Li,Guiying,Liu,Shengcai,等. Multi‐objective evolutionary optimization for hardware‐aware neural network pruning[J]. Fundamental Research,2022.
|
APA |
Hong,Wenjing,Li,Guiying,Liu,Shengcai,Yang,Peng,&Tang,Ke.(2022).Multi‐objective evolutionary optimization for hardware‐aware neural network pruning.Fundamental Research.
|
MLA |
Hong,Wenjing,et al."Multi‐objective evolutionary optimization for hardware‐aware neural network pruning".Fundamental Research (2022).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
1. Multi-Objective E(2212KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论