题名 | RSTGen: Imbuing Fine-Grained Interpretable Control into Long-Form Text Generators |
作者 | |
发表日期 | 2022
|
会议名称 | Conference of the North-American-Chapter-of-the-Association-for-Computational-Linguistics (NAAACL) - Human Language Technologies
|
会议录名称 | |
页码 | 1822-1835
|
会议日期 | JUL 10-15, 2022
|
会议地点 | null,Seattle,WA
|
出版地 | 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA
|
出版者 | |
摘要 | In this paper, we study the task of improving the cohesion and coherence of long-form text generated by language models. To this end, we propose RSTGen, a framework that utilises Rhetorical Structure Theory (RST), a classical language theory, to control the discourse structure, semantics and topics of generated text. Firstly, we demonstrate our model's ability to control structural discourse and semantic features of generated text in open generation evaluation. Then we experiment on the two challenging long-form text tasks of argument generation and story generation. Evaluation using automated metrics and a metric with high correlation to human evaluation, shows that our model performs competitively against existing models, while offering significantly more controls over generated text than alternative methods. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Engineering and Physical Sciences Research Council[EP/T017112/1];Engineering and Physical Sciences Research Council[EP/V048597/1];
|
WOS研究方向 | Computer Science
; Linguistics
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Linguistics
|
WOS记录号 | WOS:000859869501068
|
Scopus记录号 | 2-s2.0-85138371306
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/402773 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science,University of Warwick,United Kingdom 2.Department of Statistics,University of Warwick,United Kingdom 3.The Alan Turing Institute,United Kingdom 4.Department of Computer Science and Engineering,Southern University of Science and Technology,China |
第一作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Adewoyin,Rilwan A.,Dutta,Ritabrata,He,Yulan. RSTGen: Imbuing Fine-Grained Interpretable Control into Long-Form Text Generators[C]. 209 N EIGHTH STREET, STROUDSBURG, PA 18360 USA:ASSOC COMPUTATIONAL LINGUISTICS-ACL,2022:1822-1835.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论