中文版 | English
题名

Stochastic composite mirror descent: Optimal bounds with high probabilities

作者
通讯作者Tang,Ke
发表日期
2018
ISSN
1049-5258
会议录名称
卷号
2018-December
页码
1519-1529
摘要
We study stochastic composite mirror descent, a class of scalable algorithms able to exploit the geometry and composite structure of a problem. We consider both convex and strongly convex objectives with non-smooth loss functions, for each of which we establish high-probability convergence rates optimal up to a logarithmic factor. We apply the derived computational error bounds to study the generalization performance of multi-pass stochastic gradient descent (SGD) in a non-parametric setting. Our high-probability generalization bounds enjoy a loga-rithmical dependency on the number of passes provided that the step size sequence is square-summable, which improves the existing bounds in expectation with a polynomial dependency and therefore gives a strong justification on the ability of multi-pass SGD to overcome overfitting. Our analysis removes boundedness assumptions on subgradients often imposed in the literature. Numerical results are reported to support our theoretical findings.
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
资助项目
Research and Development[2017YFB1003102];National Natural Science Foundation of China[61672478];National Natural Science Foundation of China[61806091];Shenzhen Graduate School, Peking University[KQTD2016112514355531];Innovation and Technology Commission[ZDSYS201703031748284];
Scopus记录号
2-s2.0-85064828146
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/402808
专题工学院_计算机科学与工程系
作者单位
Shenzhen Key Laboratory of Computational Intelligence,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lei,Yunwen,Tang,Ke. Stochastic composite mirror descent: Optimal bounds with high probabilities[C],2018:1519-1529.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lei,Yunwen]的文章
[Tang,Ke]的文章
百度学术
百度学术中相似的文章
[Lei,Yunwen]的文章
[Tang,Ke]的文章
必应学术
必应学术中相似的文章
[Lei,Yunwen]的文章
[Tang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。