[1] Stohr J. Siegmann H C. Mganetism from fundamentals to nanoscale dynamics,姬扬译,磁学-从基础知识到纳米尺度超快动力学 [M]. 北京:高等教育出版社,2012:3-24.
[2] History of Chinese invention-invention of the magnetic compass [OL]. https://www.computersmiths.com/chineseinvention/compass.htm
[3] Kortrigt J B, Awschalom D D, Stohr J, et al. Research frontiers in magnetic materials at soft X-ray synchrotron radiation facilities [J]. J. Magn. Magn. Mater., 1999, 207(1-3): 7-44.
[4] Awschalom D D, Buhrman R A, Daughton J M, et al. Spin electronics [M]. Dordrenchr: Kluwer, 2003.
[5] Chikazumi S. Physics of Ferromagnetism [M]. Oxford: Clarendon, 1997, ed. 2.
[6] Weller D, Moser A. Thermal effect limits in ultrahigh-density magnetic recording[J]. IEEE Trans. Mag., 1999, 35(6): 4423-4439.
[7] Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics [J]. Nature Nanotechnology, 2016, 11(3): 231–241.
[8] Kim S K, Beach G S D, Lee K J, et al. Ferrimagnetic spintronics [J]. Nature Materials, 2022, 21(1): 24–34.
[9] Sierra J F, Fabian J, Kawakami R K, et al. Van der Waals heterostructures for spintronics and opto-spintronics [J]. Nature Nanotechnology, 2021, 16(8): 856–868.
[10] Zhang Y L, Liu J, Dong Y Q, et al. Strain-driven dzyaloshinskii-moriya interaction for room-temperature magnetic skyrmions [J]. Phys. Rev. Lett., 2021, 127(11): 117204.
[11] Yun S J, Cho B W, Dinesh T, et al. Escalating ferromagnetic order via Se-vacancies near vanadium in WSe2 monolayers [J]. Adv. Mater., 2022, 34(10): 2106551.
[12] Lado J L. Putting a twist on spintronics [J]. Science, 2021, 374(6571):1048-1049.
[13] Zhang X Q, Lu Q S, Liu W Q, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492.
[14] Liu F P, Spree L, Denis S K, et al. Single-electron lanthanide-lanthanide bonds inside fullerenes toward robust redox-active molecular magnets [J]. Acc. Chem. Res, 2019, 52(10): 2981−2993.
[15] Wang T, Wang C. Functional metallofullerene materials and their applications in nanomedicine, magnetics, and electronics [J]. Small, 2019, 15(48): 1901522.
[16] Sanvito S. Molecular spintronics [J]. Chem. Soc. Rev., 2011, 40(6): 3336−3355.
[17] Shiraishi M, Ikoma T. Molecular spintronics [J]. Phys. E, 2011, 43(7): 1295−1317.
[18] Zwanenburg F A, Dzurak A S, Morello A, et al. Silicon quantum electronics [J]. Rev. Mod. Phys., 2013, 85(3): 961−1019.
[19] Brown K R, Chiaverini J, Sage J M, et al. Materials challenges for trapped-ion quantum computers [J]. Nature Reviews Materials, 2021, 6(10): 892-905.
[20] Wang H M, Wang H S, Ma C X. Graphene nanoribbons for quantum electronics [J]. Nature Reviews Physics, 2021, 3(12): 791-802.
[21] Wiesendanger R. Spin mapping at the nanoscale and atomic scale [J]. Rev. Mod. Phys., 2009, 81(4): 1495-1550.
[22] Xian J J, Wang C, Nie J H, et al. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2 [J]. Nat. Commun., 2022, 13(1): 257.
[23] Qiu Z Z, Holwill M, Olsen T, et al. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene [J]. Nat. Commun., 2021, 12(1):70.
[24] Li J F, Joseph T, Ghorbani-Asl M. Edge and point-defect induced electronic and magnetic properties in monolayer PtSe2 [J]. Adv. Funct. Mater., 2022, 32: 2110428.
[25] Jack B, Xie Y L, Yazdani A. Detecting and distinguishing majorana zero modes with the scanning tunnelling microscope [J]. Nature Reviews Physics, 2021, 3(8): 541-554.
[26] Weller D, Moser A, Folks L, et al. High Ku materials approach to 100 Gbits/in2[J]. IEEE. T. Magn., 2000, 36(1): 10-15.
[27] Plumer M L, Van Ek J, Weller D. The physics of ultra-high-density magnetic recording [M]. New York: Springer–Verlag Berlin Heidelberg, 2001, Vol. 41.
[28] Khizroev S, Liu Y, Mountfied K, et al. Physics of perpendicular magnetic recording: writing process [J]. Journal of Magnetism and Magnetic Materials, 2002, 246(1-2):335-344.
[29] Terris B D, Thomson T. Nanofabricated and self-assembled magnetic structures as data storage media [J]. J. Phys. D: Appl. Phys., 2005, 38(12): R199−R222.
[30] Sessoli P. Single-atom data storage [J]. Nature, 2017, 543(7644): 189−190.
[31] Prinz G A. Hybrid ferromagnetic-semiconductor structure [J]. Science, 1990, 250(4984): 1092−1097.
[32] Navrátil J, Otyepka M, Błoński P. OsPd bimetallic dimer pushes the limit of magnetic anisotropy in atom-sized magnets for data storage [J]. Nanotechnology, 2022, 33: 215001.
[33] Coulais C. Snappy data storage [J]. Nature, 2021, 589(7842):360-361.
[34] Dabrowski M, Scott J N, Hendren W R. Transition metal synthetic ferrimagnets: tunable media for all-optical switching driven by nanoscale spin current [J]. Nano Lett., 2021, 21(21): 9210-9216.
[35] Singha A, Sostina D, Wolf C. Mapping orbital-resolved magnetism in single Lanthanide atoms [J]. ACS Nano, 2021, 15(10): 16162-16171.
[36] Paschke F, Birk T. Vivien enenkel exceptionally high blocking temperature of 17 K in a surface-supported molecular magnet [J]. Adv. Mater., 2021, 33(40): 2102844.
[37] Xia B R, Gao D Q, Xue D S. Ferromagnetism of two-dimensional transition metal chalcogenides: both theoretical and experimental investigations [J]. Nanoscale, 2021, 13(30): 12772-12787.
[38] Muckel F, von Malottki S, Holl C, et al. Experimental identification of two distinct skyrmion collapse mechanisms [J]. Nature Physics, 2021, 17(3): 395-402.
[39] Donati F, Pivetta M, Wolf C, et al. Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets [J]. Nano Lett., 2021, 21(19): 8266-8273.
[40] Stöhr J, Siegmann H C. Magnetism: From fundamentals to nanoscale dynamics, solid-state sciences [M]. Berlin: Springer, 2006, Vol. 5.
[41] Prinz G A, Device physics-magnetoelectronics [J], Science, 1998, 282(5394): 1660-1663.
[42] Thompson S E, Parthasarathy S. Moore's law: the future of Si microelectronics [J]. Materials Today, 2006, 9(6): 20-25.
[43] Durr H A, Dhesi S S, Dudzik E, et al. Spin and orbital magnetization in self-assembled Co clusters on Au(111) [J]. Phys. Rev. B, 1999, 59(2): R701-R704.
[44] Loth S, Baumann S, Lutz C P, et al. Bistability in atomic-scale antiferromagnets [J]. Science, 2012, 335(6065): 196-199.
[45] Khajetoorians A A, Baxevanis B, Hubner C, et al. Current-driven spin dynamics of artificially constructed quantum magnets [J]. Science, 2013, 339(6115): 55–59.
[46] Steinbrecher M, Sonntag A, Dias M D, et al. Absence of a spin-signature from a single Ho adatom as probed by spin-sensitive tunneling [J]. Nat. Commun., 2016, 7: 10454(1-6).
[47] Sessoli R, Gatteschi D, Caneschi A, et al. Magnetic bistability in a metal-ion cluster [J]. Nature, 1993, 365(6442): 141–143.
[48] Verlhac B, Bachellier N, Garnier L, et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope [J]. Science, 2019, 366(6465): 623-627.
[49] Krylov D S. Liu F. Avdoshko S M, et al. Record-high thermal barrier of the relaxation of magnetization in the nitride clusterfullerene Dy2ScN@C80-Ih [J]. Chem. Commun., 2017, 53(56): 7901–7904.
[50] Schlesier C, Spree L, Kostanyan A, et al. Strong carbon cage influence on the single molecule magnetism in Dy-Sc nitride clusterfullerenes [J]. Chem. Commun., 2018, 54(80): 9730–9733.
[51] Spree L, Schlesier C, Kostanyan A, et al. Single-molecule magnets DyM2N@C80 and Dy2MN@C80 (M=Sc, Lu): The impact of diamagnetic metals on Dy3+ magnetic anisotropy, Dy center dot center dot Dy coupling, and mixing of molecular and lattice vibrations [J]. Chem. Eur. J., 2020, 26(11): 2436–2449.
[52] Nie M Z, Xiong J, Zhao C, et al. Luminescent single-molecule magnet of metallofullerene DyErScN@Ih-C80 [J]. Nano Res., 2019, 12(7): 1727–17316.
[53] Westerström R, Dreiser J, Piamonteze C, et al. An endohedral single-molecule magnet with long relaxation times: DySc2N@C80 [J]. J. Am. Chem. Soc., 2012, 134(24): 9840–9843.
[54] Junghans K, Schlseie C, Kostantan A, et al. Methane as a selectivity booster in the arc-discharge synthesis of endohedral fullerenes: Selective synthesis of the single-molecule magnet Dy2TiC@C80 and its congener Dy2TiC2@C80 [J]. Angew. Chem. Int. Ed., 2015, 54(45): 13411–13415.
[55] Chen C H, Krlov D S, Avdoshenko S M, et al. Selective arc-discharge synthesis of Dy2S-clusterfullerenes and their isomer-dependent single molecule magnetism [J]. Chem. Sci., 2017, 8(9): 6451–6465.
[56] 官润南,陈木青,杨上峰.金属富勒烯单分子磁体[J].科学通报, 2020, 65(21): 2209-2224.
[57] Westerström R, Dreiser J, Piamonteze C, et al. Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets [J]. Phys. Rev. B, 2014, 89(6): 06040(R).
[58] Fridman J R, Sarachik M P, Tejada J, et al. Macroscopic measurement of resonant magnetization tunneling in high-spin molecules [J]. Phys. Rev. Lett., 1996, 76(20): 3830-3833.
[59] Wernsdorfer W, Sessoli R, Quantum phase interference and parity effects in magnetic molecular clusters [J]. Science, 1999, 284(5411): 133-135.
[60] Leuenberger M N, Loss D. Quantum computing in molecular magnets [J]. Nature, 2001, 410(6830): 789-793.
[61] Ardavan A. Rival O, Morton J J L, et al. Will spin-relaxation times in molecular magnets permit quantum information processing? [J]. Phys. Rev. Lett., 2007, 98(5): 057201.
[62] Wiesendanger R. Single-atom magnetometry [J]. Current Opinion in Solid state& Materials Science, 2011, 15(1):1-7.
[63] Natterer F D, Yang K, Paul W, et al. Reading and writing single-atom magnets [J]. Nature, 2017, 543(7644): 226–228.
[64] Khajetoorians A A, Wiebe J, Chilian B, et al. Realizing all-spin-based logic operations atom by atom [J]. Science, 2011, 332(6033): 1062-1064.
[65] 刘霞. 单原子量子信息存储首次实现 [N]. 科技日报, 2011-05-04, 第 001 版.
[66] Meier F, Levy J, Loss D. Quantum computing with spin cluster qubits [J]. Phys. Rev. Lett., 2003, 90(40): 047901.
[67] Khajetoorians A A, Heinrich A J. Toward single-atom memory [J]. Science, 2016, 352(6293): 296-297.
[68] Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices [J]. Science, 2000, 287(5460): 1989-1992.
[69] Zener C. Interaction between the d-shells in the transition metals [J]. Phys. Rev., 1951, 81(3): 440-444.
[70] Zener C. Interaction between the d-shells in the transition metals. 2. Ferromagnetic compounds of manganese with perovskite structure [J]. Phys. Rev., 1951, 82(3): 403-405.
[71] Zener C. Interaction between the d-shells in the transition metals. 4. The intrinsic antiferromagnetic character of iron [J]. Phys. Rev., 1952, 85(2): 324-328.
[72] Hewson A C. The kondo problem to heavy fermions [M]. Cambridge Univ. Press, Cambridge, 1993.
[73] Gambardella P, Dhesi S S, Gardonio S, et al. Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films [J]. Phys. Rev. Lett., 2002, 88(4): 047202.
[74] Coey J M D. Magnetism and magnetic materials [M]. 影印版,北京:北京大学出版社,2014: 16-17.
[75] Stoner E C. Collective electron ferromagnetism [J], Proc. Roy. Soc., 1938, 165(A922): 0372-0414.
[76] Slater J C. The ferromagnetism of nickel [J]. Phys. Rev., 1936, 49(7): 0537-0545.
[77] Slater J C. The ferromagnetism of nickel II [J]. Phys. Rev., 1936, 49(12): 0931-0937.
[78] Mott N F. A discussion of the transition metals on the basis of quantum mechanics [J]. Proc. Phys. Soc., 1935, 47: 571-588.
[79] 李正中,固体理论 [M]. 北京:高等教育出版社,2002: 410-411
[80] Anderson P W. Localized magnetic states in metals [J]. Phys. Rev., 1961, 124(1): 41-53.
[81] Kane B E. A silicon-based nuclear spin quantum computer [J]. Nature, 1998, 393(6681): 133–137.
[82] Fuechsle M, Miwa J A, Mahapatra S, et al. A single-atom transistor [J]. Nat. Nanotechnol., 2012, 7(4): 242–246.
[83] Mahapatra S, Buch H, Simmons M Y. Charge sensing of precisely positioned P donors in Si [J]. Nano Lett., 2011, 11(10): 4376–4381.
[84] Hamid E, Moraru D, Kuzuya Y. Electron-tunneling operation of single-donor-atom transistors at elevated temperatures [J]. Phys. Rev. B: Condens. MatterMater. Phys., 2013, 87(8): 085420.
[85] Cole J H, Greentree A D, Wellard C J, et al. Quantum-dot cellular automata using buried dopants [J]. Phys. Rev. B: Condens.Matter Mater. Phys., 2005, 71(11): 115302.
[86] Pierre M, Wacquez R, Jehl X, et al. Single-donor ionization energies in a nanoscale CMOS channel [J]. Nat. Nanotechnol., 2009, 5(2): 133–137.
[87] Ladd T D, Jelezko F, Laflamme R, et al. Quantum computers [J]. Nature, 2010, 464(7285) 45–53.
[88] Zhang M H, Zhang C W, Wang P J, et al. Prediction of high-temperature chern insulator with half-metallic edge states in asymmetry-functionalized stanene [J]. Nanoscale, 2018, 10(43): 20226–20233.
[89] Li S S, Ji W X, Hu S J, et al. Effect of amidogen functionalization on quantum spin hall effect in Bi/Sb(111) films [J]. ACS Appl. Mater. Interfaces, 2017, 9(47): 41443-41453.
[90] Zhang S J, Zhang C W, Zhang S F, et al. Intrinsic dirac half-metal and quantum anomalous hall phase in a hexagonal metal-oxide lattice [J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2017, 96(20): 205433.
[91] Zhang L, Zhang S F, Ji W X, et al. Discovery of a novel spin-polarized nodal ring in a two-dimensional HK lattice [J]. Nanoscale, 2018, 10(44): 20748–20153.
[92] Wang Y P, Ji W X, Zhang C W, et al. Two-dimensional arsenene oxide: A realistic large-gap quantum spin hall insulator [J]. Appl. Phys. Lett., 2017, 110(21): 213101.
[93] Jiang W, Liu Z, Mei J W, et al. Dichotomy between frustrated local spins and conjugated electrons in a two-dimensional metal–organic framework [J]. Nanoscale, 2019, 11(3): 955–961.
[94] Ni X J, Jiang W, Huang H Q, et al. Intrinsic quantum anomalous hall effect in a two dimensional anilato-based lattice [J]. Nanoscale, 2018, 10(25): 11901–11906.
[95] Mohamand S, Pascal R. Tuning the magnetic properties of MoS2 single nanolayers by 3d metals edge doping [J]. J. Phys. Chem. C, 2016, 120(19): 10691-10697.
[96] Zhang X Y, Xu W X, Dai J P, et al. Role of embedded 3d transition metal atoms on the electronic and magnetic properties of defective bilayer graphene [J]. Carbon, 2017, 118: 376-383.
[97] Long L, Chen R X, He C Z, et al. Magnetic and optical properties of (Mn, Co) co-doped SnO2 [J]. Vacuum, 2020, 182: 109681.
[98] Xue S Q, Zhang F C, Zhang S L, et al. Electronic and magnetic properties of Ni-doped zinc-blende ZnO: A first-principles study [J]. Nanomaterials, 2018, 8(5): 281.
[99] Lin L, Guo Y P, He C Z, et al. First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2 [J]. Chin. Phys. B, 2020, 29(9): 097102.
[100] Ma D W, Ju W W, Li T X, et al. Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals [J]. Applied Surface Science, 2016, 364: 181–189.
[101] Wang D, Yang L, Cao J N. First-principles study on the magnetic properties of IB group transition metal-doped MoS2 [J]. Modern Physics Letters B, 2021, 35(11): 2141002
[102] Ptok A, Kapcia K J, Ciechan A. Electronic properties of Bi2Se3 dopped by 3dtransition metal (Mn, Fe, Co, or Ni) ions [J]. J. Phys.: Condens. Matter, 2021, 33(6): 065501.
[103] Longo R C, Carrete J, Callego L J. Magnetism of substitutional Fe impurities in graphene nanoribbons [J]. J. Chem. Phys., 2011, 134(2): 024704.
[104] Al Azri M, Elzain M, Bouziane K, et al. Magnetic structure of Mn-doped 6H-SiC [J]. Journal of Physics: Conference Series, 2015, 609: 012007.
[105] Song Y X, Tong W Y, Shen Y H, et al. First-principles study of enhanced magnetic anisotropies in transition-metal atoms doped WS2 monolayer [J]. J. Phys.: Condens. Matter, 2017, 29(47): 475803.
[106] Zhu Y Y, Zhang J M. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems [J]. Superlattices and Microstructures, 2018, 117: 152-162.
[107] Sun X Y, Yang K, Li Z Y, et al. Fe- and Co-doped tungsten disulfide monolayers: 2D ferromagnetic half-metals at room temperature [J]. Phys. Status Solidi RRL, 2022, 16: 2100611.
[108] Yin J, Wang Y H, Bi L, et al. Boron nitride nanoribbons with single vacancy defects and doped with 3d transition metals: A first-principles study [J]. Materials Today Communications, 2021, 26: 101861.
[109] Wang M, Tang S, Ren J, et al. Magnetism in boron nitride monolayer induced by cobalt or nickel doping [J]. J. Supercond. Nov. Magn., 2018, 31(5):1559–1565.
[110] Sun M L, Wang S K, Du Y H, et al. Transition metal doped arsenene: A first-principles study [J]. Applied Surface Science, 2016, 389: 594–600.
[111] Wu P, Huang M. Transition metal doped arsenene: Promising materials for gas sensing, catalysis and spintronics [J]. Applied Surface Science, 2020, 506: 144660.
[112] Liu M Y, Chen Q Y, Huang Y, et al. A first-principles study of transition metal doped arsenene [J]. Superlattices and Microstructures, 2016, 100: 131-141.
[113] Sun M L, Ren Q Q, Zhao Y M, et al. Electronic and magnetic properties of 4d series transition metal substituted graphene: A first-principles study [J]. Carbon, 2017, 120: 265-273.
[114] Lu J T, Guo L S, Xiang G, et al. Electronic and magnetic tunability of SnSe monolayer via doping of transition-metal atoms [J]. Journal of Electronic Materials, 2019, 49(1): 290-296.
[115] Luo M, Xu Y, Shen Y H, et al. Magnetic properties of SnSe monolayer doped by transition-metal atoms: A first-principle calculation [J]. Results in Physics, 2020, 17: 103126.
[116] Zhao X W, Qiu B, Hu G C, et al. Spin polarization properties of pentagonal PdSe2 induced by 3D transition-metal doping: First-principles calculations [J]. 11(11): 2339.
[117] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d 过渡金属 Co 掺杂核壳结构硅纳米线的第一性原理研究 [J], 物理学报, 2014, 63(16): 163101.
[118] Yang Y, Fan X L, Pan R, et al. First-principles investigations of transition-metal doped bilayer WS2 [J]. Phys. Chem. Chem. Phys., 2016, 18(15): 10152-10157.
[119] Cao C, Wu M, Jiang J Z, et al. Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures [J]. Phys. Rev. B, 2010, 81(20): 205424.
[120] Manade M, Vines F, Illas F. Transition metal adatoms on graphene: A systematic density functional study [J]. Carbon, 2015, 95: 525-534.
[121] Ma D W, Lu Z S, Ju W W, et al. First-principles studies of BN sheets with absorbed transition metal single atoms or dimers: stabilities, electronic structures, and magnetic properties [J]. J. Phys.: Condens. Matter, 2012, 24(14): 145501.
[122] Li S J, Zhou M, Li M L, et al. Adsorption of 3d, 4d, and 5d transition-metal atoms on single-layer boron nitride [J]. J. Appl. Phys., 2010, 123(9): 095110.
[123] Afshar M, Doosti H, Shokri A, et al. Electronic and magnetic properties of single 3dtransition metals adsorbed on anthracene: A relativistic density functional theory study [J]. Molecular Physics, 2016, 114(14): 2187-2194.
[124] Luo M, Shen Y H, Song Y X. Structural and magnetic properties of transition metal adsorbed ReS2 monolayer [J]. Japanese Journal of Applied Physics, 2017, 56(5): 055701.
[125] Chen F, Hou X, Li C M, et al. Structural, magnetic and electronic properties of 3dtransition-metal atoms ddsorbed monolayer BC2N: A First-principles study [J]. Materials, 2019, 12(10): 1601.
[126] Li L L, Zhang H, Cheng X L, et al. First-principles studies on 3d transition metal atom adsorbed twin graphene [J]. Applied Surface Science, 2018, 441: 647–653.
[127] Majd Z G, Taghizadeh S F, Amiri P, et al. Half-metallic properties of transition metals adsorbed on WS2 monolayer: A first-principles study [J]. Journal of Magnetism and Magnetic Materials, 2019, 481: 129-135.
[128] Zuo P J, Wang H, Wang Z, et al. Large magnetic anisotropy of single transition metal adatoms on WS2 [J]. Journal of Magnetism and Magnetic Materials, 2020, 506: 166796.
[129] Hu A M, Luo H J, Xiao W Z. Electronic structures and magnetic properties in transition metal adsorbed gt-C3N4 monolayer [J]. Journal of Magnetism and Magnetic Materials, 2020, 493: 165745.
[130] Afsjar M. Shokri A, Darabi A. Magnetic and structural properties of single 3dtransition metals adsorbed on corannulene: A density functional theory study [J]. Computational Materials Science, 2016, 112: 92–95.
[131] Pang Q, Li L, Zhang C L, et al. Structural, electronic and magnetic properties of 3dtransition metal atom adsorbed germanene: A first-principles study [J]. Mater. Chem. Phys., 2015, 160: 96−104.
[132] Kaung A L, Yuan H K, Chen H. First-principles study of manganese adsorption on Si(100) surface [J]. Appl. Surf. Sci., 2009, 255(13-14): 6624−6628.
[133] Donato F, Rusponi S, Stepanow S, et al. Magnetic remanence in single atoms [J]. Science, 2016, 352(6283): 318-321.
[134] Yu Y H, She L M, Fu H X, et al. Kondo effect mediated topological protection: Co on Sb(111) [J]. ACS Nano, 2014, 8(11): 11576–11582.
[135] Ren J D, Guo H M, Pan J B, et al. Kondo effect of cobalt adatoms on a graphene monolayer controlled by substrate-induced tipples [J]. Nano Lett., 2014, 14(7): 4011-4015.
[136] Chen G X, Li H F, Yang X, et al. Adsorption of 3d transition metal atoms on graphene-like gallium nitride monolayer: A first-principles study [J]. Superlattices and Microstructures, 2018, 115: 108-115.
[137] Krasheninnikov A V, Lehtinen P O, Foster A S, et al. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism [J]. Phys. Rev. Lett., 2009, 102(12): 126807.
[138] Meyer J C, Chuvilin A, AlgaraL-Siller G, et al. Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes [J]. Nano Lett., 2009, 9(7): 2683-2689.
[139] Choi J, Kim Y W, Lim D K, et al. Subsurface incorporation of Co atoms into Si(100) [J]. J. Phys. Chem. C, 2011, 115(31): 15467−15470.
[140] Dash S P, Goll D, Carstanjen H D, et al. Subsurface enrichment of Co in Si(100) at initial stages of growth at room temperature: A study by high-resolution rutherford backscattering [J]. Appl. Phys. Lett., 2007, 90(13): 132109.
[141] Yenngui M, Riedel D. Cobalt adsorption on the bare Si(100)-2×1 surface at low temperature (12K) [J]. Surf. Sci., 2014, 619: 10−18.
[142] Horsfield A P, Kenny S D, Fujitani H. Density-functional study of adsorption of Co on Si(100) [J]. Phys. Rev. B, 2001, 64(24): 245332.
[143] Tayran C, Cakmak M. Co on the H-passivated Si(001) surface: Density-functional calculations [J]. Phys. B-Condensed Matter, 2018, 542: 44−50.
[144] Wulfhekel W. The exchange changes everything [J]. Nat. Nanotechnol., 2014, 9(1): 13−14.
[145] Kresse G, Furthműller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996 (6): 15-50.
[146] Kresse G, Furthműller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Revi. B, 1996 (54): 11169-11186.
[147] Sergey S. Modern ab-initio calculations on modified Tomas-Fermi-Dirac theory [J]. Open Journal of Modelling and Simulation, 2015 (3): 96-103.
[148] Thomas L H. The calculation of atomic fields [M]. Cambridge University, 1927: 542-548.
[149] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B, 136(3B): B864-B871.
[150] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133-A1138.
[151] Görling A. Density-functional theory beyond the Hohenberg-Kohn theorem [J]. Phys. Rev. A, 1999, 59 (5), 3359–3374.
[152] Kohn W, Savin A, Ullrich C A. Hohenberg-Kohn theory including spin magnetism and magnetic fields [J]. Int. J. Quantum Chem. 2004, 100(1), 20-31.
[153] Englisch H, Englisch R. Hohenberg-Kohn theorem and non-V-representable densities [J]. Phys. Stat. Mech. Its Appl. 1983, 121(1–2), 253–268.
[154] Orio M, Pantazis D A. Density functional theory [J]. Photosynthesis Research. 2009, 102(2-3): 443-453.
[155] Schluter M, Sham L J. Density functional theory [J]. Physics Today, 1982, 35(2)-36-43.
[156] Sholl D S, Steckel J A. Density functional theory: A practical introduction [M]. Hoboken: Wiley, 2009.
[157] Kurth S, Perdew J P. Density-functional correction of random-phase-approximation correlation with results for jellium surface energies [J]. Physical Review B, 1999(59): 10461-10468.
[158] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996 (77): 3865-3868.
[159] Alfé D, Gillan M J. The energetics of oxide surface by quantum Monte Carlo [J]. J. Phys.: Condens. Matt., 2006, 18(35): L435-L440.
[160] Anisimov V I, Zaanen J, Andersen O K. Band theory and mott insulators: Hubbard U instead of stoner I [J]. Phys. Rev. B, 1991, 44(3): 943-954.
[161] Dion M, Rydberg H, Schroder E, et al. Van der Waals density functional for general geometries [J]. Phys. Rev. Lett., 2004, 92(24): 246401.
[162] Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections [J]. Journal of Computational Chemistry, 2004, 25(12): 1463-1473.
[163] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
[164] Geim A K, Novoselov K S.The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
[165] Geim A K. Graphene: Status and prospects [J]. Science, 2009, 324(5934): 1530-1534.
[166] 刘中流, 王业亮, 高红军. 单元素二维原子晶体材料研究进展 [J], 物理, 2017, 46(3), 145-153.
[167] Liu H, Neal A T, Zhu Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility [J]. ACS Nano, 2014, 8(4): 4033-4041.
[168] Li L K, Yu Y J, Ye G J, et al. Black phosphorus field-effect transistors [J]. Nat. Nanotechnol., 2014, 9(5): 372-377.
[169] Yin Y H, Shao C, Zhang C, et al. Anisotropic transport property of antimonene MOSFETs [J]. ACS Applied Materials & Interface, 2020, 12(19): 22378-22386.
[170] Hu Y, Liang J C, Xia Y R, et al. 2D arsenene and arsenic materials: Fundamental properties, preparation, and applications [J]. Small, 2021, 18(9): 2104556.
[171] Gablech I, Pekarek J, Klempa J, et al. Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene [J]. Trac-Trends in Analytical Chemistry, 2018, 105: 251-262.
[172] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展 [J]. 材料导报, 2019, 33, 22-27.
[173] Zhang S L, Guo S Y, Chen Z F, et al. Recent progress in 2D group-VA semiconductors: from theory to experiment [J]. Chem. Soc. Rev., 2018, 47(3): 982-1021.
[174] Pumera M, Sofer Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus [J]. Adv. Mater., 2017, 29(21): 1605299.
[175] Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors [J]. Nano Lett., 2008, 8(10): 3498-3502.
[176] Yang L F, Mi W B, Wang X C. Schottky potential barrier and spin polarization at Co/antimonene interfaces [J]. Rsc Advances, 2016, 6(45): 38746-38752.
[177] Kresse G, Furthmuller J, Hafaner J. Theory of the crystal structures of selenium and tellurium: the effect of generalized-gradient corrections to the local-density approximation [J]. Phys. Rev. B, 1994, 50(18): 13181–13185.
[178] Kim Y S, Hummer K, Kresse G. Accurate band structures and effective masses for InP, InAs, and InSb using hybrid functionals [J]. Phys. Rev. B, 2009, 80(3): 035203.
[179] Perdew J P, Burke K, Ernzerhhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
[180] Klimeš J, Dowler D R, Michaelides A. Van der Waals density functionals applied to solids [J]. Phys. Rev. B, Phys., 2011, 83(19): 195131.
[181] Klimeš J, Dowler D R, Michaelides A. Chemical accuracy for the Van der Waals density functional [J]. J. Phys.: Condens. Matter, 2010, 22(2): 022201.
[182] Monkhorst H J, Pack J D. Special points for brillouin-zone integrations [J]. Phys. Rev. B, 1976, 13(12): 5188−5192.
[183] Pack J D, Monkhorst H J. Special points for brillouin-zone integrations [J]. Phys. Rev. B, 1977, 16(4): 1748-1749.
[184] Chadi D J. Special points for brillouin-zone integrations [J]. Phys. Rev. B, 1977, 16(4): 1746-1747.
[185] Tang W, Sanville E, Henkelman G. A grid-based bader analysis algorithm without lattice bias [J]. Phys.: Condens. Matter, 2009, 21(8): 084204.
[186] Xie Q D, Lin W N, Yang B S, et al. Giant enhancements of perpendicular magnetic anisotropy and spin-orbit torque by a MoS2 layer [J]. Adv. Mater., 2019, 31(21):1900776.
[187] Hasan M Z. Kane C L. Colloquium: Topological insulators [J]. Review of Modern Physics, 2010, 82(4): 3045–3067.
[188] Wang D S, Wu R Q, Freeman A J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model [J]. Phys. Rev. B, 1993, 47(22):14932–14947.
[189] Dieny B, Chshiev M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications [J]. Rev. Mod. Phys., 2017, 89(2):025008.
[190] Cong W T, Tang Z, Zhao X G. Enhanced magnetic anisotropies of single transition-metal adatoms on a defective MoS2 monolayer [J]. Sci. Rep., 2015, 5: 9361.
[191] Yan S M, Qiao W, Jin D Y, et al. Role of exchange splitting and ligand-field splitting in tuning the magnetic anisotropy of an individual iridium atom on TaS2 substrate [J]. Phys. Rev. B, 2021, 103(22): 224432.
[192] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nat. Photon., 2010, 4(9): 611-622.
[193] Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession in single graphene layers at room temperature [J]. Nature, 2007, 448(7153): 571-574.
[194] Han S W, Hwang Y H, Kim S H, et al. Controlling ferromagnetic easy axis in a layered MoS2 single crystal [J]. Phys. Rev. Lett., 2013, 110(24): 247201.
[195] Sie E J, Lui C H, Lee Y H, et al. Large, valley-exclusive bloch-siegert shift in monolayer WS2 [J]. Science, 2017, 355(6329): 1066-1069.
[196] Lucking M C, Xie W Y, Choe D H, et al. Traditional semiconductors in the two-dimensional limit [J]. Phys. Rev. Lett., 2018, 120(8): 086101.
[197] Liy G, Li Y L, Sa B S, et al. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective [J]. Catal. Sci. Technol., 2017, 7(3): 545-559.
[198] Lu J P, Yang J, Carvalho A, et al. Light-matter interactions in phosphorene [J]. Acc. Chem. Res., 2016, 49(9): 1806-1815.
[199] Wang Q H, Kalantar-zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[200] Heine T. Transition metal chalcogenides: Ultrathin inorganic materials with tunable electronic properties [J]. Acc. Chem. Res., 2015, 48(1): 65-72.
[201] Ganatra R, Zhang Q. Few-layer MoS2: A promising layered semiconductor [J]. ACS Nano, 2014, 8(5): 4074-4099.
[202] Rpldán R, Silva-guillėn J A, López-sancho M P, et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se) [J]. Ann. Phys., 2014, 526(9-10): 347-357.
[203] Han W, Kawakami R K, Cmitra M, et al. Graphene spintronics [J]. Nature Nanotechnology, 2014, 9(10): 794-807.
[204] Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor [J]. Phys. Rev. B, 2013, 87(19): 195201.
[205] Liu X Q, Ni J. Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2 [J]. J. Appl. Phys., 2014, 116(4): 044311.
[206] Gil C J, Pham A, Yu A B, et al. An ab initio study of transition metals doped with WSe2 for long-range room temperature ferromagnetism in two-dimensional transition metal dichalcogenide [J]. J. Phys.: Condens.Matter, 2014, 26(30): 306004.
[207] Dolui K, Rungger I, Das P C, et al. Possible doping strategies for MoS2 monolayers: An ab initio study [J]. Phys. Rev. B, 2013, 88(7): 075420.
[208] Yue Q, Chang S L, Qin S, et al. Functionalization of monolayer MoS2 by substitutional doping: A first-principles study [J]. Phys. Lett. A, 2013, 337(19-20): 1362-1367.
[209] Cheng Y C, Zhang Q Y, Schwingenschlogl U. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides [J]. Phys. Rev. B, 2014, 89(15): 155429.
[210] Fang Q L, Zhao X M, Huang Y H, et al. Structural stability and magnetic-exchange coupling in Mn-doped monolayer/bilayer MoS2 [J]. Phys. Chem. Chem. Phys., 2018, 20(1): 553-561.
[211] Smori A, Gerber I C, Lounis S, et al. Dependence of the magnetic interactions in MoS2 monolayer on Mn-doping configurations [J]. J. Phys.: Condens. Matter, 2019, 31(46): 465802.
[212] Yue Y L, Jiang C, Han Y L, et al. Magnetic anisotropies of Mn-, Fe-, and Co-doped monolayer MoS2 [J]. J. Magn. Magn. Mater., 2020, 496: 165929.
[213] Xie L Y, Zhang J M. Electronic structures and magnetic properties of the transition-metal atoms (Mn, Fe, Co and Ni) doped WS2: A first-principles study [J]. Superlattice Microst. 2016, 98:148–157.
[214] Zhao X, Dai X Q, Xia C X, et al. Structural defects in pristine and Mn-doped monolayer WS2: a first-principles study [J]. Superlattice Microst., 2015, 85: 339–347.
[215] Li L Z, Qin R, Li H, et al. Functionalized graphene for high-performance two-dimensional spintronics devices [J]. ACS Nano, 2011, 5(4): 2601–2610.
[216] Guan S S, Ke S S, Yu F F, et al. Controlling magnetism of monolayer Janus MoSSe by embedding transition-metal atoms [J]. Appl. Surf. Sci., 2019, 496: 143692.
[217] Guo S Q, Wang Y Y, Zhang J Y. Realization of valley polarization in monolayer WS2via 3d transition metal atom adsorption [J]. Journal of Physics D-Applied Physics, 2020, 53(38): 384001.
[218] Chen X F, Zhong L S, Li X, et al. Valley splitting in the transition-metal dichalcogenide monolayer via atom adsorption [J]. Nanoscale, 2017, 9(6): 2188–2194.
[219] Blöchl P E. Projector augmented-wave method [J]. Phys. Rev. B, 1994, 50(24): 17953−17979.
[220] Liechtestein A I, Anisimov V I, Zaanen J. Density-functional theory and stronginteractions: Orbital ordering in mott-Hubbard insulators [J]. Phys. Rev. B, Condens.Matter, 1995, 52(8): 5467-5470.
[221] Cococcioni M, De Gironcoli S. Linear response approach to the calculation of theeffective interaction parameters in the LDA+U method [J]. Phys. Rev. B, 2005, 71(3):035105.
[222] Kulik H J, Cococcioni M, Scherlis D A, et al. Density functional theory intransition-metal chemistry: A self-consistent Hubbard U approach [J]. Phys. Rev.Lett., 2006, 97(10): 103001.
[223] Steiner M M, Albers R C, Sham L J. Quasiparticle properties of Fe, Co, and Ni [J].Phys. Rev. B, 1992, 45(23): 13272−13284.
[224] Parlinski K, Li Z Q, Kawazoe Y. First-principles determination of the soft mode incubic ZrO2 [J]. Phys. Rev. Lett., 1997, 78 (21): 4063–4066.
[225] Togo A, Tanaka I. First principles phonon calculations in materials science [J]. Scr.Mater., 2015, 108: 1-5.
[226] Cahangirov S, Topsakal M, Akturk E, et al. Two- and one-dimensional honeycombstructures of silicon and germanium [J]. Phys. Rev. Lett., 2009, 102(23): 236804.
[227] Kamal C, Ezawa M. Arsenene: Two-dimensional buckled and puckered honeycombArsenic systems [J]. Phys. Rev. B, 2015, 91(8): 085423.
[228] You B Q, Wang X C, Chen G F, et al. Prediction of electronic structure of van derWaals interfaces: Benzene adsorbed monolayer MoS2, WS2 and WTe2 [J]. Physica E:Low-dimensional Systems and Nanostructures, 2017, 88: 87-96.
[229] You B Q, Wang X C, Zheng Z D. et al. Black phosphorene/monolayertransition-metal dichalcogenides as two dimensional van der Waals heterostructures:A first-principles study [J]. Phys. Chem. Chem. Phys., 2016, 18(10): 7381-7388.
[230] Henkelman G, Arnaldsson A, Jonsson H. A fast and robust algorithm for Baderdecomposition of charge density [J]. J. Comput. Mater. Sci., 2006, 36(3): 354−360.
[231] Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for Badercharge allocation [J]. J. Comput. Chem., 2007, 28(5): 899−908.
[232] Ding Y M, Shi J J, Xia C X, et al. Enhancement of hole mobility in InSe monolayervia an InSe and black phosphorus heterostructure [J]. Nanoscale, 9(38):14682-14689.
[233] Sharma G, Tewari S. Yu-Shiba-Rusinov states and topological superconductivity inIsing paired superconductors [J]. Phys. Rev. B, 2016, 94(9): 094515.
[234] Zhou B T, Yuan N F Q, Jiang H L, et al. Ising superconductivity and majoranafermions in transition-metal dichalcogenides [J]. Phys. Rev. B, 2016, 93(18):180501.
[235] Jauho A P, Wingreen N S, Meir Y. Time-dependent transport in interacting and noninteracting resonant-tunneling systems [J]. Phys. Rev. B, 1994, 50(8): 5528-5544.
[236] Świrkowica R, Bamaś J, Wilczynski M. Nonequilibrium kondo effect in quantum dots [J]. Phys. Rev. B, 2003, 68(19): 195318.
[237] Li J Y, Yao Q S, Wu L, et al. Designing light-element materials with large effective spin-orbit coupling [J]. Nature Communications, 2022, 13(1): 919.
[238] Zhang Y, Li L, Sun J H, et al. Kondo effect in monolayer transition metal dichalcogenide Ising superconductors [J]. Phys. Rev. B, 2020, 101(3): 035124.
[239] Baltz V, Manchon A, Tsoi M, et al. Antiferromagnetic spintronics [J]. Rev. Mod. Phys., 2018, 90(1): 15005.
[240] Duine R A, Lee K J, Parkin S S P, et al. Synthetic antiferromagnetic spintronics [J]. Nature Physics, 2018, 14(3): 217-219.
[241] Chen J S, Wang L J, Zhang M, et al. Evidence for magnetic skyrmions at the interface of ferromagnet/topological-insulator hetero-structures [J]. Nano Lett., 2019, 19(9): 6144−6151.
[242] Fujita H, Sato M. Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets [J]. Phys. Rev. B, 2017, 95(5): 054421.
[243] Lundeberg M B, Yang R, Renard J, et al. Defect mediated spin relaxation and dephasing in graphene [J]. Phys. Rev. Lett., 2013, 110(15): 156601.
[244] Jang W, Zhou M, Liu Z, et al. Structural, electronic, and magnetic properties of tris(8-hydroxyquinoline) iron (III) molecules and their magnetic coupling with ferromagnetic surface: first-principles study [J]. J. Phys.: Condens. Matter, 2016, 28(17): 176004.
[245] Sun D L, Kareis C M, Van Schoooten K J, et al. Spintronic detection of interfacial magnetic switching in a paramagnetic thin film of tris (8-hydroxyquinoline) iron (III) [J]. Phys. Rev. B, 2017, 95(5): 054423.
[246] Wang J Y, Deloach A, Jiang W. Tuning interfacial spin filters from metallic to resistive within a single organic semiconductor family [J]. Phys. Rev. B, 2017, 95(24): 241410.
[247] Gregg J F, Petej I, Jouguelet E, et al. Spin electronics - a review [J]. J. Phys. D: Appl. Phys., 2002, 35(18): R121–R155.
[248] Hogberg H, Malm J O, Talyzin A, et al. Deposition of transition metal carbides and superlattices using C60 as carbon source [J]. J. Electrochem. Soc., 2000, 147(9): 3361–3369.
[249] Pedio M, Hevesi K, Zema N, et al. C60/metal surfaces: adsorption and decomposition [J]. Surf. Sci., 1999, 437(1-2): 249–260.
[250] Sakai S, Yakushiji K, Mitani S, et al. Tunnel magnetoresistance in Conanoparticle/Co-C60 compound hybrid system [J]. Appl. Phys. Lett., 2006, 89(11):113118.
[251] Shinohara H. Endohedral metallofullerenes [J]. Rep. Prog. Phys., 2000, 63(6): 843–892.
[252] Lips K, Waiblinger M, Pietzak B, et al. Atomic nitrogen encapsulated in fullerenes:Realization of a chemical Faraday cage [J]. Phys. Status Solidi A, 2000, 177(1): 81–91.
[253] King D J, Kenny S D, Sanville E. Adsorption of N@C60 on Si(100) [J]. Surf. Sci.,2009, 603(1): 178−182.
[254] Godwin P D, Kenny S D, Smith R, et al. The structure of C60 and endohedral C60 onthe Si{100} surface [J]. Surf. Sci., 2001, 490(3): 409−414.
[255] Zhang X X, Wen G H, Huang S M, et al. Magnetic properties of Fe nanoparticlestrapped at the tips of the aligned carbon nanotubes [J]. J. Magn. Magn. Mater, 2001,231(1): L9-L12.
[256] Chai Y, Guo T, Jin C M, et al. Fullerenes with metals inside [J]. J. Phys. Chem., 1991,95(20):7564-7568.
[257] Wang L S, Alford J M, Chai Y, et al. The electronic structure of Ca@C60 [J]. Chem.Phys. Lett., 1993, 207(4-6): 354-359.
[258] Kubozono Y, Ohta T, Hayashibara T, et al. Preparation and extraction of Ca@C60 [J].Chem. Lett., 1995, 6: 457-458.
[259] Kubozono Y, Maeda H, Takabayashi Y, et al. Extractions of Y@C60, Ba@C60,La@C60, Ce@C60, Pr@C60, Nd@C60, and Gd@C60 with Aniline [J]. J. Am. Chem.Soc., 1996, 118(29): 6998-6999.
[260] Funasaka H, Sugiyama K, Yamamoto K, et al. Magnetic properties of rare-earthmetallofullerenes [J]. J. Phys. Chem. A., 1995, 99(7): 1826−1830.
[261] Huang H J, Yang S H, Zhang X X. Magnetic properties of heavy rare-earthmetallofullerenes M@C82 (M = Gd, Tb, Dy, Ho, and Er) [J]. J. Phys. Chem. B, 2000,104(7): 1473−1482.
[262] De Nadai C, Mirone A, Dhesi S S, et al. Local magnetism in rare-earth metalsencapsulated in fullerenes [J]. Phys. Rev. B 2004, 69(18): 184421.
[263] Kitayra R, Okimoto H, Shinohara H, et al. Magnetism of the endohedralmetallofullerenes M@C82 (M = Gd, Dy) and the corresponding nanoscale peapods:synchrotron soft X-ray magnetic circular dichroism and density-functional theorycalculations [J]. Phys. Rev. B, 2007, 76(17): 172409.
[264] Zhang K K, Wang C, Zhang M H, et al. A Gd@C82 single-molecule electret [J]. Nat.Nanotechnol., 2020, 15(12): 1019−1049.-105-
[265] Wang K D, Zhao J, Chen L, et al. Unveiling metal-cage hybrid states in a single endohedral metallofullerene [J]. Phys. Rev. Lett., 2003, 91(18): 185504.
[266] David W I F, Ibberson R M, Matthewman J C, et al. Crystal-structure an bonding of ordered C60 [J]. Nature, 1991, 353(6340):147-149.
[267] Li F, Ramage D, Lannin J S, et al. Radial-distribution function of C60 structure of fullerene [J]. Phys. Rev. B, 1991, 44(23): 13167-13170.
[268] Liu S Z, Lu Y J, Kappes M M, et al. The structure of the C60 molecule X-ray crystal structure determination of a twin at 110 K [J]. Science, 1991, 254(5030): 408-410.
[269] Uchoa B, Kotov V N, Peres N M R, et al. Localized magnetic states in graphene [J]. Phys. Rev. Lett., 2008, 101(2): 026805.
[270] Li L, Sun J H, Wang Z H, et al. Magnetic states and kondo screening in weyl semimetals with chiral anomaly [J]. Phys. Rev. B, 2018, 98(7): 075110.
[271] Hay P J. Gaussian basis sets for molecular calculations representation of 3d orbitals in transition metal atoms [J]. J. Chem. Phys., 1977, 66(10): 4377–4384.
[272] Choi T Y, Paul W, Rolf-Pissarczyk S, et al., Atomic-scale sensing of the magnetic dipolar field from single atoms [J]. Nature Nanotechnology, 2017, 12(5): 420–424.
[273] Allred A L, Rochow E G. A scale of electronegativity based on electrostatic force [J]. J. inorg. Nucl. Chem., 1958, 5(4): 264−268.
[274] Tang W Q, Ke C M, Chen K, et al. Magnetism manipulation of Con-adsorbed monolayer WS2 through charge injection [J]. J. Phys.: Condens. Matter, 2020, 32(27): 275001.
修改评论