中文版 | English
题名

蓝相液晶晶格结构调控及显示/防伪器件研究

其他题名
RESEARCHES ON MANIPULATION OF BLUE PHASE LIQUID CRYSTALLINE STRUCTURES AND DISPLAYS/ANTI-COUNTERFEITING DEVICES
姓名
姓名拼音
XU Xiaowan
学号
11849549
学位类型
博士
学位专业
080901 物理电子学
学科门类/专业学位类别
08 工学
导师
罗丹
导师单位
电子与电气工程系
论文答辩日期
2022-05-16
论文提交日期
2022-10-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

蓝相液晶是存在于手性向列相与各向同性相之间的液晶相,具有自组装立方晶格三维光子晶体结构,同时具有电场快速响应和光学各向同性等特性,这使得蓝相液晶在光电器件、液晶显示、防伪以及传感等领域受到越来越多的关注。无取向、均匀锚定等条件下获得的蓝相液晶通常呈现多晶或单畴结构,存在晶格结构间缺陷和错位,这极大的影响了蓝相液晶的反射率和光电调制特性。蓝相单晶,具有无缺陷的晶格结构,可以大幅度提高蓝相液晶的光电特性。然而,目前的制备方法存在时间长、耗费高等问题。因此,亟需探索简便、快速地制备蓝相液晶单晶的方法。此外,手性浓度是影响蓝相液晶晶格结构、晶格取向及相变过程的重要因素,现有的研究仍待完善。最后,在器件方面,进一步提高蓝相液晶的Bragg反射特性、制备新型蓝相液晶光电器件(如反射式显示器、防伪器件等),是促进蓝相液晶走向实际应用的重要手段。

本论文通过全息光刻技术制备亚微米量级图案化基底,制备了大尺寸(厘米量级)的蓝相液晶单晶。研究了手性浓度和液晶盒厚度对蓝相液晶相变过程、晶格取向和晶格系数的影响。基于双层双手性蓝相液晶的叠加,提高了蓝相液晶的反射率,制备了超高反射率蓝相液晶显示器。本论文还通过全息光刻技术,设计制备了蓝相液晶仿生微纳结构复合防伪器件。主要研究内容包括:

(1)基于全息光刻技术的耗时短、耗能低的大尺寸(厘米级)蓝相液晶单晶的制备及特性研究。通过全息光刻技术,制备了亚微米量级图案化基底,实现了蓝相液晶单晶的诱导和生长。建立了蓝相液晶晶格取向的仿真模型。研究了三种相变过程(各向同性相-蓝相I、蓝相II-蓝相I、及各向同性相-蓝相II)中出现的红、绿、蓝三个波段的蓝相液晶单晶。分析了蓝相液晶晶格结构之间的晶界自愈合现象,验证了蓝相液晶单晶的存在。制备得到的蓝相液晶单晶具有无缺陷的晶格结构、高反射率、窄带宽等特点。

(2)手性浓度和液晶盒厚度的变化对蓝相液晶的影响研究。研究了手性浓度、液晶盒厚度对蓝相液晶晶格结构和相变的影响,研究了各向同性相-蓝相I和各向同性-蓝相II的中间态的晶格取向,研究了液晶盒厚度对蓝相液晶晶格取向的影响。通过调节手性浓度和液晶盒厚度,制备得到了均匀的液晶蓝相II [011]晶格取向。

(3)基于蓝相液晶薄膜的电场可调控的超高反射率显示器的制备和特性研究。通过双层双手性蓝相液晶聚合物模板的叠加,制备了超高反射率蓝相液晶显示器,使得蓝相液晶的反射率达到89%(红)、82%(绿)、68%(蓝)。研究了蓝相液晶三原色的电场可调控特性,通过电场强度的改变,控制了蓝相液晶的反射率。电场强度为1V/μm时,蓝相液晶的最高反射率可达: 94%(红)、86%(绿)、和72%(蓝)。随后,反射率随电场增强而降低,为蓝相液晶提供了灰阶显示。

(4)基于全息光刻和蓝相液晶薄膜的仿生微纳结构复合防伪器件研究。制备了一种具有超高热稳定性(-50˚C至260˚C)和优异Bragg反射光学特性(反射率44%)的固态蓝相液晶薄膜。同时,根据孔雀尾羽的仿生微纳结构,设计了可以在三维空间实现多角度复合图像传输的光子晶体结构。通过全息光刻技术,实现了双层微纳结构蓝相液晶复合器件的制备。与手机扫描二维码的应用场景相结合,扩展了复合防伪器件的应用场景,通过多角度扫描,实现了信息保护或进入许可两种结果。

其他摘要

As a kind of self-assembly three dimensional photonic crystals, blue phases exist between chiral nematic phases and isotropic phases, which have good application in sensors and structural color displays due to its properties of saturated colors in visible range, free of polarizers and fast response of electric field. However, blue phase liquid crystals exhibit polycrystalline structures which affect the reflectance and electro-optical properties. Through electric field and anchoring condition, blue phase liquid crystals have fixed orientation and exists good reflectivity. However, due to the chirality of blue phase liquid, the reflectance is less than 50%. At the meantime, chirality has important influence on the lattice structures on blue phases. However, optical properties of blue phases caused by small changes of chirality are missed, yet. Besides, through temperature and patterned substrates, single crystalline blue phases have been achieved, which largely improves the properties of blue phases. However, the fabrication methods are time-cost and small-scale. Therefore, controlling the orientation of blue phase lattice structures, improving the Bragg reflectivity are still challenging.

Based on the researches, blue phase liquid crystals are fabricated to achieve large scale single crystalline blue phases through holographic lithography. The properties of orientation and lattice structures of blue phases caused by chirality and cell thickness are proposed. Electrically-switchable hyper-reflective blue phase displays are fabricated. Besides, based on holographic lithography and blue phase liquid crystal films, bio-inspired multiplexing anti-counterfeiting is proposed. In this paper, the main points are shown below:

(1) based on patterned nanostructured substrates, large scale single crystalline blue phases was fabricated through holographic nanolithography for the first time, each size of single crystalline blue phases is over 1cm2. A new phenomenon – diffusion of crystal boundary– was observed as the scale of single crystals grow for the first time, which gives a further demonstration of the existence of single-crystal blue phase. At the meantime, single crystalline blue phases were fabricated in three kinds of phase transitions, which are isotropic phase to blue phase I, blue phase II to blue phase I, and isotropic phase to blue phase II. The fabricated blue phases were defects-free and hyper-reflective.

(2) Based on the simulation of diffraction of lattice structures, study of the influence of temperature, chirality and cell thickness were researched. For the first time, uniform lattice orientation of blue phase II [011] was aligned through parallel anchoring; and found a fresh phase transition of isotropic phase to coexisted blue phase I and II. Through parallel anchoring, three kinds of lattice orientation, which are blue phase I [011], blue phase II [011] and blue phase II [001], can be aligned by different cell thickness.

(3) Besides, electrically tunable hyper-reflective blue phase liquid crystal film based on bilayer opposite-chirality structures was fabricated, which had hyper reflectance of 89%, 82% and 68% for red, green and blue, respectively. And it would reach the highest reflectance of 94%, 86% and 72%, respectively, under electric field of 1V/μm.

(4) And at the meantime, based on the washing out-refilling blue phase liquid crystal film and liquid crystal monomer, a high thermo-stable and reflectance solid blue phase liquid crystal film was proposed, offers potential application of blue phase liquid crystals. A new kind of bio-inspired multiplexing anti-counterfeiting film based on solid blue phase liquid crystal film and holographic lithography was fabricated, which transmitted multi-images in free space via multi-angles. And it can be combined with the situation of scanning quick response code with smartphones leading to multiple encryptions with information protection or access permission.

关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-09
参考文献列表

[1] Reinitzer F. Beiträge zur kenntniss des cholesterins[J]. Monatshefte für Chemie /Chemical Monthly,1888,9:421-441.
[2] Clark N A, Hurd A J, Ackerson B J. Single Colloidal Crystals[J]. Nature,1979,281(5726):57-60.
[3] Hornreich R M, Shtrikman S. A Body-Centered Cubic Structure for the Cholesteric Blue Phase[J]. Journal De Physique,1980,41(4):335-340.
[4] Meiboom S, Sammon M. Structure of the Blue Phase of a Cholesteric Liquid-Crystal[J]. Physical Review Letters,1980,44(13):882-885.
[5] Jerome B, Pieranski P, Godec V, Haran G, Germain C. Determination of the Blue Phase-II Structure[J]. Journal De Physique,1988,49(5):837-844.
[6] Higashiguchi K, Yasui K, Kikuchi H. Direct Observation of Polymer Stabilized Blue Phase I Structure with Confocal Laser Scanning Microscope[J]. Journal of the American Chemical Society,2008,130(20):6326-6327.
[7] Henrich O, Stratford K, Cates M E, Marenduzzo D. Structure of Blue Phase III of Cholesteric Liquid Crystals[J]. Physical Review Letters,2011,106(10):107801.
[8] Hu Y, Zhang Y, Yang D, Ma D, Huang S. Self-Assembly of Colloidal Particles into Amorphous Photonic Crystals[J]. Materials Advances,2021,2(20):6499-6518.
[9] Zhang R, Wang Q, Zheng X. Flexible Mechanochromic Photonic Crystals: Routes to Visual Sensors and their Mechanical Properties[J]. Journal of Materials Chemistry C,2018,6(13):3182-3199.
[10] Yu S P, Muniz J A, Hung C L, Kimble H J. Two-Dimensional Photonic Crystals for Engineering Atom-Light Interactions[J]. Proceedings of the National Academy of Sciences,2019,116(26):12743-12751.
[11] Wang H, Liu Y, Chen Z, Sun L, Zhao Y. Anisotropic Structural Color Particles From Colloidal Phase Separation[J]. Science Advances,2020,6(2):1438.
[12] Zhang Y, Sheng Y, Zhu S, Xiao M, Krolikowski W. Nonlinear Photonic Crystals: from 2D to 3D[J]. Optica,2021,8(3):372-381.
[13] Lin Y-H, Chen H-S, Lin H-C, Tsou Y-S, Hsu H-K, Li W-Y. Polarizer-Free and Fast Response Microlens Arrays Using Polymer-Stabilized Blue Phase Liquid Crystals[J]. Applied Physics Letters,2010,96(11):113505.
[14] Zhu G, Wei B Y, Shi L Y, Lin X W, Hu W, Huang Z D, Lu Y Q. A Fast Response Variable Optical Attenuator Based on Blue Phase Liquid Crystal[J]. Optics Express,2013,21(5):5332-5337.
[15] Yan J, Li Q, Hu K. Polarization Independent Blue Phase Liquid Crystal Gratings Based on Periodic Polymer Slices Structure[J]. Journal of Applied Physics,2013,114(15):153104.
[16] Luo D, Dai H T, Sun X W. Polarization-Independent Electrically Tunable/Switchable Airy Beam Based on Polymer-Stabilized Blue Phase Liquid Crystal[J]. Optics Express,2013,21(25):31318-31323.
[17] Sun C, Lu J. A Polarization-Independent Blue Phase Liquid Crystal on Silicon with Low Operation Voltage[J]. Scientific Reports,2019,9(1):16900.
[18] Tian L-L, Chu F, Duan W, Li R, Gu X-Q, Li L, Wang Q-H. Beam Steering Device Based on Blue Phase Liquid Crystal[J]. Optics Communications,2021,481:126525.
[19] Petriashvili G, Hamdi R, Chanishvili A, Zurabishvili T, Chubinidze K, Ponjavidze N. Electrically Controlled Lasing in Supercooled Liquid Crystal Blue Phase I Microdroplets[J]. ACS Applied Electronic Materials,2020,2(6):1724-1728.
[20] Nordendorf G, Schmidtke J, Wilkes D, Kitzerow H. Temperature-Insensitive Electro-Optic Response of Polymer-Stabilized Blue Phases[J]. Journal of Materials Chemistry C,2017,5(3):518-521.
[21] Lin C-L, Chen P-S, Lai P-C, Hsu C-C, Chang J-H. Amorphous IGZO TFT-Based Pixel Buffer to Suppress Blue-Phase Liquid Crystal High-Frequency Effect[J]. IEEE Electron Device Letters,2017,38(12):1673-1675.
[22] Lin C-L, Lai P-C, Cheng M-H, Lai P-C, Lee C-L. Novel Pixel Circuit Using Coupling Method to Achieve High Driving Voltage for Blue-Phase LCDs[J]. IEEE Transactions on Electron Devices,2017,64(11):4768-4771.
[23] Huang Y, Chen H, Tan G, Tobata H, Yamamoto S, Okabe E, Lan Y-F, Tsai C-Y, Wu S-T. Optimized Blue-phase Liquid Crystal for Field sequential-Color Displays[J]. Optical Materials Express,2017,7(2):641-650.
[24] Petriashvili G, Chanishvili A. Liquid Crystal Blue Phases Interconversions Based Real-Time Thermal Imaging Device[J]. Optics Express,2019,27(9):13526-13531.
[25] Jiang S-A, Wu C-H, Mo T-S, Huang S-Y, Lin J-D, Lee C-R. All-Optically Controllable Photonic Crystals Based on Chiral-Azobenzene-Doped Blue Phase Liquid Crystals[J]. Crystals,2020,10(10):906.
[26] Yang Y, Kim Y K, Wang X, Tsuei M, Abbott N L. Structural and Optical Response of Polymer-Stabilized Blue Phase Liquid Crystal Films to Volatile Organic Compounds[J]. ACS Appl Mater Interfaces,2020,12(37):42099-42108.
[27] Hou D-S, Zheng L, Sun D-P, Zhou X, Zhu J-L, Han W-M. Polymer-Stabilized Blue Phase Liquid Crystal Sensor for Sensitive and Selective Detection of Organic Vapors[J/OL]. Liquid Crystals,2022,49(2):201-208.
[28] Oton E, Yoshida H, Morawiak P, Strzezysz O, Kula P, Ozaki M, Piecek W. Orientation Control of Ideal Blue Phase Photonic Crystals[J]. Scientific Reports,2020,10(1):10148.
[29] Kim K, Hur S-T, Kim S, Jo S-Y, Lee B R, Song M H, Choi S-W. A Well-Aligned Simple Cubic Blue Phase for a Liquid Crystal Laser[J]. Journal of Materials Chemistry C,2015,3(21):5383-5388.
[30] Zhang Y, Yoshida H, Cho S Y, Fukuda J-I, Ozaki M. In Situ Optical Characterization of Twinning in Liquid Crystalline Blue Phases[J]. ACS Applied Materials & Interfaces,2021,13(30):36130-36137.
[31] Nayek P, Jeong H, Kang S-W, Lee S H, Park H-S, Lee H J, Kim H S, Lee G-D. Effect of the Grain Size on Hysteresis of Liquid-Crystalline Blue Phase I[J]. Journal of the Society for Information Display,2012,20(6):318-325.
[32] Chen M, Lin Y-H, Chen H-S, Chen H-Y. Electrically Assisting Crystal Growth of Blue Phase Liquid Crystals[J]. Optical Materials Express,2014,4(5):953-959.
[33] Feller M B, Chen W, Shen Y R. Investigation of Surface-Induced Alignment of Liquid-Crystal Molecules by Optical Second-Harmonic Generation[J]. Physics Review A,1991,43(12):6778-6792.
[34] Faetti S. Azimuthal Anchoring Energy of a Nematic Liquid Crystal at a Grooved Interface[J]. Physics Review A,1987,36(1):408-410.
[35] Kizhakidathazhath R, Higuchi H, Okumura Y, Kikuchi H. Weak Anchoring Interface Inducing Acrylate Copolymer Designs for High-Performance Polymer-Stabilized Blue Phase Liquid Crystal Displays[J]. ChemistrySelect,2017,2(23):6728-6731.
[36] Faetti S, Marianelli P. Strong Azimuthal Anchoring Energy at a Nematic-Polyimide Interface[J]. Physics Review E,2005,72(5):051708.
[37] Shi Y, Zhao C, Ho J Y-L, Song F, Chigrinov V G, Luo D, Kwok H-S, Sun X W. High Photoinduced Ordering and Controllable Photostability of Hydrophilic Azobenzene Material Based on Relative Humidity[J]. Langmuir,2018,34(15):4465-4472.
[38] Geng Y, Yao L, Chigrinov V, Kwok H S. Analysis of the Rewriting Time of Liquid Crystal Optical Rewritable E-Paper[J]. Liquid Crystals,2014,41(4):610-614.
[39] Oton E, Netter E, Nakano T, Katayama Y D, Inoue F. Monodomain Blue Phase Liquid Crystal Layers for Phase Modulation[J]. Scientific Reports,2017,7:44575.
[40] Wright D C. Mermin N D. Crystalline Liquids: the Blue Phases[J]. Reviews of Modern Physics,1989,61(2):385-432.
[41] Seideman T. The Liquid-Crystalline Blue Phases[J]. Reports on Progress in Physics,1990,53(6):659-706.
[42] Hornreich R M, Shtrikman S. Landau Theory of Blue Phases[J]. Molecular Crystals and Liquid Crystals,1988,165:183-211.
[43] Brazovskii S A. Phase Transition of an Isotropic System to a Inhomogenous State[J]. Soviet Physics JETP,1975,41:85-89.
[44] Grebel H, Hornreich R M, Shtrikman S. Landau Theory of Cholesteric Blue Phases[J]. Physical Review A,1984,30(6):3264-3278.
[45] Hornreich R M and Shtrikman S. Landau Theory of Twist-Induced Biaxiality in Cholesteric Liquid-Crystals[J]. Physical Review A,1984,29(6):3444-3446.
[46] Meiboom S, Sethna J P, Anderson P W, Brinkman W F. Theory of the Blue Phase of Cholesteric Liquid-Crystals[J]. Physical Review Letters,1981,46(18):1216-1219.
[47] Meiboom S, Sammon M, Berreman D W. Lattice Symmetry of the Cholesteric Blue Phases[J]. Physical Review A,1983,28(6):3553-3560.
[48] Meiboom S, Sammon M, Brinkman W F. Lattice of Disclinations: The Structure of the Blue Phases of Cholesteric Liquid Crystals[J]. Physical Review A,1983,27(1):438-454.
[49] Armitage D, Price F P. Precision Recording Dilatometer with Results for Cholesteryl Nonanoate[J] Journal of Applied Physics,1976,47(6):2735-2739.
[50] Armitage D, Price F P. "Volumetric Pre-Transition in Cholesterics[J]. Journal of Chemical Physics,1977,66(8):3414-3417.
[51] Bergmann K, Stegemeyer H. Evidence for Polymorphism within the So-Called Blue Phase of Cholesteric Esters .1. Calorimetric and Microscopic Measurements[J]. Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences,1979,34(2):251-252.
[52] Bergmann K, Stegemeyer H. Evidence for Polymorphism within the So-Called Blue Phase of Cholesteric Esters .4. Temperature and Angular-Dependence of Selective Reflection[J]. Zeitschrift Fur Naturforschung Section a-a Journal of Physical Sciences,1979,34(8):1031-1033.
[53] Thoen J. Adiabatic Scanning Calorimetric Results for the Blue Phases of Cholesteryl Nonanoate[J]. Physical Review A,1988,37(5):1754-1759.
[54] Saupe A. On Molecular Structure and Physical Properties of Thermotropic Liquid Crystals[J]. Molecular Crystals and Liquid Crystals,1969,7(1):59-74.
[55] Meiboom S, Sammon M. Blue Phases of Cholesteryl Nonanoate[J]. Physical Review A,1981,24(1):468-475.
[56] Johnson D L, Flack J H, Crooker P P. Structure and Properties of the Cholesteric Blue Phases[J]. Physical Review Letters,1980,45(8):641-644.
[57] Crooker P P. Polarization of Multiply Scattered Bragg-Reflections from Chiral Cubic Structures[J]. Physical Review A,1985,31(2):1010-1013.
[58] Hornreich R M, Shtrikman S. Optical Selection-Rules and Structures of Cholesteric Blue Phases[J]. Physics Letters A,1981,82(7):345-349.
[59] Hornreich R M, Shtrikman S. Theory of Light-Scattering in Cholesteric Blue Phases[J]. Physical Review A,1983,28(3):1791-1807.
[60] Blumel T, Stegemeyer H. Growth of 3-Dimensional Liquid Single-Crystals and Morphological-Studies of Cholesteric Blue Phases[J]. Journal of Crystal Growth,1984,66(1):163-168.
[61] Barbetmassin R, Cladis P E, Pieranski P. Crystal Habit of Liquid-Crystal Blue Phase-I[J]. Physical Review A,1984,30(2):1161-1164.
[62] Cladis P E, Pieranski P, Joanicot M. Elasticity of Blue Phase-I of Cholesteric Liquid-Crystals[J]. Physical Review Letters,1984,52(7):542-545.
[63] Onusseit H, Stegemeyer H. Growth of Cubic Liquid Single-Crystals in Cholesteric Blue Phases[J]. Journal of Crystal Growth,1983,61(2):409-411.
[64] Marcus M. Crystallography of Blue Phase-1 and Phase-2[J]. Physical Review A,1982,25(4):2272-2275.
[65] Marcus M A. Light-Scattering Study of Fluctuations in Blue-Phase-II[J]. Molecular Crystals and Liquid Crystals,1985,122(1):131-140.
[66] Stegemeyer H, Blumel T, Hiltrop K, Onusseit H, Porsch F. Thermodynamic, Structural and Morphological-Studies on Liquid-Crystalline Blue Phases[J]. Liquid Crystals,1986,1(1):3-28.
[67] Kuczynski W, Bergmann K, Stegemeyer H. A Model of the Blue Phase of Cholesteryl Esters[J]. Molecular Crystals and Liquid Crystals,1980,56(9):283-287.
[68] Gandhi S S, Chien L-C. Unraveling the Mystery of the Blue Fog: Structure, Properties, and Applications of Amorphous Blue Phase III[J]. Advanced Materials,2017,29(47):1704296.
[69] Paul T, Saha J. Origin and Structure of Liquid Crystalline Blue Phase III[J]. Scientific Reports,2020,10(1):16016.
[70] Yamaguchi M, Shimizu K, Sagisaka M, Yoshizawa A. Disclination Network Morphologies in Blue Phase III[J]. Liquid Crystals,2020,48(1):54-62.
[71] Zasadzinski J A N, Meiboom S, Sammon M J, Berreman D W. Freeze-Fracture Electron-Microscope Observations of the Blue Phase-III[J]. Physical Review Letters,1986,57(3):364-367.
[72] Marcus M. Quasi-Crystalline Behavior and Phase-Transition in Cholesteric Blue Phase[J]. Journal De Physique,1981,42(1):61-70.
[73] Rokhsar D S, Sethna J P. Quasi-Crystalline Textures of Cholesteric Liquid-Crystals - Blue Phase-III[J]. Physical Review Letters,1986,56(16):1727-1730.
[74] Hornreich R M, Kugler M, Shtrikman S. Localized Instabilities and the Order-Disorder Transition in Cholesteric Liquid-Crystals[J]. Physical Review Letters,1982,48(20):1404-1407.
[75] Collings P J. Optical-Rotatory Dispersion Mesasurements in the 3rd Cholesteric Blue Phase[J]. Physical Review A,1984,30(4):1990-1993.
[76] Gandhi S S, Li Y, Luo D, Chien L-C. Laser Emission in a 3D Nanoporous Polymer Replica of Amorphous Blue Phase III[J]. Journal of Polymer Science Part B: Polymer Physics,2018,56(7):551-557.
[77] Oseen C W. The Theory of Liquid Crystals[J]. Transactions of the Faraday Society,1933,29(140):883-899.
[78] Frank F C. I. Liquid Crystals. On the Theory of Liquid Crystals[J]. Discussions of the Faraday Society,1958,25:19-28.
[79] Landau L D. 29 - On the Theory of Phase Transitions[M]. In Collected Papers of, edited by D. Ter Haar (Pergamon, 1965),pp:193-216.
[80] De Gennes P G. Short Range Order Effects in the Isotropic Phase of Nematics and Cholesterics[J]. Molecular Crystals and Liquid Crystals,1971,12(3):193-214.
[81] Ravnik M, Žumer S. Landau–de Gennes Modelling of Nematic Liquid Crystal colloids[J] Liquid Crystals,2009,36(10-11):1201-1214.
[82] Gramsbergen E F, Longa L, Jeu W H. Landau Theory of the Nematic-Isotropic Phase Transition[J] Physics Reports,1986,135(4):195-257.
[83] Alexander G P, Yeomans J M. Stabilizing the Blue Phases[J]. Physical Review E,2006,74(6):061706.
[84] Nobili M, Durand G. Disorientation-Induced Disordering at a Nematic-Liquid-Crystal-Solid Interface[J]. Physical Review A,1992,46(10):R6174-R6177.
[85] Fournier J B, Galatola P. Modeling Planar Degenerate Wetting and Anchoring in Nematic Liquid Crystals[J]. Europhysics Letters,2005,72(3):403-409.
[86] Chen Y, Wu S-T. Electric Field-Induced Monodomain Blue Phase Liquid Crystals[J]. Applied Physics Letters,2013,102(17):171110.
[87] Sridurai V, Mathews M, Yelamaggad C V, Nair G G. Electrically Tunable Soft Photonic Gel Formed by Blue Phase Liquid Crystal for Switchable Color-Reflecting Mirror[J]. ACS Applied Materials & Interfaces,2017,9(45):39569-39575.
[88] Guo D Y, Chen C W, Li C C, Jau H C, Lin K H, Feng T M, Wang C T, Bunning T J, Khoo I C, Lin T H. Reconfiguration of Three-Dimensional Liquid-Crystalline Photonic Crystals by Electrostriction[J]. Nature Materials,2020,19(1):94-101.
[89] Chen H-S, Lin Y-H, Wu C-H, Chen M, Hsu H-K. Hysteresis-Free Polymer-Stabilized Blue Phase Liquid Crystals Using Thermal Recycles[J]. Optical Materials Express,2012,2(8):1149-1155.
[90] Chen C W, Hou C T, Li C C, Jau H C, Wang C T, Hong C L, Guo D Y, Wang C Y, Chiang S P, Bunning T J, Khoo I C, Lin T H. Large Three-Dimensional Photonic Crystals Based on Monocrystalline Liquid Crystal Blue Phases[J]. Nature Communications,2017,8(1):727.
[91] Nayek P, Jeong H, Park H R, Kang S-W, Lee S H, Park H S, Lee H J, Kim H S. Tailoring Monodomain in Blue Phase Liquid Crystal by Surface Pinning Effect[J]. Applied Physics Express,2012,5(5):051701.
[92] Zheng Z G, Yuan C L, Hu W, Bisoyi H K, Tang M J, Liu Z, Sun P Z, Yang W Q, Wang X Q, Shen D, Li Y, Ye F, Lu Y Q, Li G, Li Q. Light-Patterned Crystallographic Direction of a Self-Organized 3D Soft Photonic Crystal[J]. Advanced Materials,2017,29(42):1703165.
[93] Martinez-Gonzalez J A, Li X, Sadati M, Zhou Y, Zhang R, Nealey P F, Pablo J J. Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals[J]. Nature Communications,2017,8:15854.
[94] Li X, Martinez-Gonzalez J A, Hernandez-Ortiz J P, Ramirez-Hernandez A, Zhou Y, Sadati M, Zhang R, Nealey P F, Pablo J J. Mesoscale Martensitic Transformation in Single Crystals of Topological Defects[J]. Proceedings of the National Academy of Sciences,2017,114(38):10011-10016.
[95] Li X, Martinez-Gonzalez J A, Pablo J J, Nealey P F. Thickness Dependence of Forming Single Crystal by Liquid-Crystalline Blue Phase on Chemically Patterned Surface[J]. Proceedings of SPIE:Emerging Liquid Crystal Technologies XIII,2018,10555:14.
[96] Li X, Martinez-Gonzalez J A, Park K, Yu C, Zhou Y, Pablo J J, Nealey P F. Perfection in Nucleation and Growth of Blue-Phase Single Crystals: Small Free-Energy Required to Self-Assemble at Specific Lattice Orientation[J]. ACS Applied Materials & Interfaces,2019,11(9):9487-9495.
[97] Li X, Martinez-Gonzalez J A, Guzman O, Ma X, Park K, Zhou C, Kambe Y, Jin H M, James Dolan A, Nealey P F, Pablo J J. Sculpted Grain Boundaries in Soft Crystals[J]. Science Advances,2019,5(11):9112.
[98] Li X, Park K, Guzman O, Martinez-Gonzalez J A, Dolan J A, Pablo J J, Nealey P F. Nucleation and Growth of Blue Phase Liquid Crystals on Chemically-Patterned Surfaces: a Surface Anchoring Assisted Blue Phase Correlation Length[J]. Molecular Systems Design & Engineering,2021,6(7):534-544.
[99] Khan R K, Ramarao P. Selective Stabilization of Blue Phase Liquid Crystals Using Spherical and Rod-Shaped Colloidal Nanocrystals[J]. Journal of Applied Physics,2021,129(2):024702.
[100] Coles H J, Pivnenko M N. Liquid Crystal 'Blue Phases' with a Wide Temperature Range[J]. Nature,2005,436(7053):997-1000.
[101] Malik P, Khushboo, Yadav S, Singh A. Aluminum Nanowires and Gold Nanoparticles - Driven Stabilization of Blue Phase Liquid Crystals[J]. Phase Transitions,2021,94(6-8):536-545.
[102] Hu W, Wang L, Wang M, Zhong T, Wang Q, Zhang L, Chen F, Li K, Miao Z, Yang D, Yang H. Ultrastable Liquid Crystalline Blue Phase from Molecular Synergistic Self-Assembly[J]. Nature Communications,2021,12(1):1440.
[103] Lavrič M, Cordoyiannis G, Tzitzios V, Lelidis I, Kralj S, Nounesis G, Žumer S, Daniel M, Kutnjak Z. Blue Phase Stabilization by CoPt-Decorated Reduced-Graphene Oxide Nanosheets Dispersed in a Chiral Liquid Crystal[J]. Journal of Applied Physics,2020,127(9):095101.
[104] Punjani V, Mohiuddin G, Kaur S, Choudhury A R, Paladugu S, Dhara S, Ghosh S, Pal S K. Chiral Bent-Shaped Molecules Exhibiting Unusually Wide Range of Blue Liquid-Crystalline Phases and Multistimuli-Responsive Behavior[J]. Chemistry,2020,26(26):5859-5871.
[105] Li Y, Huang S, Zhou P, Liu S, Lu J, Li X, Su Y. Polymer‐Stabilized Blue Phase Liquid Crystals for Photonic Applications[J]. Advanced Materials Technologies,2016,1(8):1600102.
[106] Feng Y, Zhu Z, Zhang H, Huang K, Huang T, Han W-M, Wu D-Q, Lu J. Chiral Polymer Network Stabilised Blue Phase Liquid Crystals[J]. Liquid Crystals,2020,47(14-15):2184-2193.
[107] Nordendorf G, Hoischen A, Schmidtke J, Wilkes D, Kitzerow H-S. Polymer-Stabilized Blue Phases: Promising Mesophases for a New Generation of Liquid Crystal Displays[J]. Polymers for Advanced Technologies,2014,25(11):1195-1207.
[108] Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T. Polymer-Stabilized Liquid Crystal Blue Phases[J]. Nature Materials,2002,1(1):64-68.
[109] Castles F, Day F V, Morris S M, et al. Blue-Phase Templated Fabrication of Three-Dimensional Nanostructures for Photonic Applications[J]. Nature Materials,2012,11(7):599-603.
[110] Castles F, Morris S M, Hung J M, Qasim M M, Wright A D, Nosheen S, Choi S S, Outram B I, Elston S J, Burgess C, Hill L, Wilkinson T D, Coles H J. Stretchable Liquid-Crystal Blue-Phase Gels[J]. Nature Materials,2014,13(8):817-821.
[111] Yan J, Wu S-T, Cheng K-L, Shiu J-W. A Full-Color Reflective Display Using Polymer-Stabilized Blue Phase Liquid Crystal[J]. Applied Physics Letters,2013,102(8):081102.
[112] Yan J, Xu D, Cheng H C, Wu S T Lan Y F, Tsai C Y. Turning Film for Widening the Viewing Angle of a Blue Phase Liquid Crystal Display[J]. Applied Optics,2013,52(36):8840-4.
[113] Xu X W, Zhang X W, Luo D, Dai H T. Low Voltage Polymer-Stabilized Blue Phase Liquid Crystal Reflective Display by Doping Ferroelectric Nanoparticles[J]. Optics Express,2015,23(25):32267-73.
[114] Yang J, Zhao W, Yang Z, He W, Wang J, Ikeda T, Jiang L. Printable Photonic Polymer Coating Based on a Monodomain Blue Phase Liquid Crystal Network[J]. Journal of Materials Chemistry C,2019,7(44):13764-13769.
[115] Yang J, Zhao W, Yang Z, He W, Wang J, Ikeda T, Jiang L. Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films[J]. ACS Applied Materials & Interfaces,2019,11(49):46124-46131.
[116] Hu W, Sun J, Wang Q, Zhang L, Yuan X, Chen F, Li K, Miao Z, Yang D, Yu H, Yang H. Humidity‐Responsive Blue Phase Liquid‐Crystalline Film with Reconfigurable and Tailored Visual Signals[J]. Advanced Functional Materials,2020,30(43):2004610.
[117] Yang Y, Zhang X, Chen Y, Yang X, Ma J, Wang J, Wang L, Feng W. Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-Dimensional Blue Phase Liquid Crystal Networks[J]. ACS Applied Materials & Interfaces,2020,13(34):41102-41111.
[118] Wang M, Zou C, Li C, Sun J, Wang L, Hu W, Zhang C, Zhang L, He W, Yang H. Bias-Polarity Dependent Bidirectional Modulation of Photonic Bandgap in a Nanoengineered 3D Blue Phase Polymer Scaffold for Tunable Laser Application[J]. Advanced Optical Materials,2018,6(16):1800409.
[119] Wang M, Zou C, Sun J, Zhang L, Wang L, Xiao J, Li F, Song P, Yang H. Asymmetric Tunable Photonic Bandgaps in Self-Organized 3D Nanostructure of Polymer-Stabilized Blue Phase I Modulated by Voltage Polarity[J]. Advanced Functional Materials,2017,27(46):1702261.
[120] Miller R J, Gleeson H F. Lattice Parameter Measurements from the Kossel Diagrams of the Cubic Liquid Crystal Blue Phases[J]. Journal de Physique II,1996,6(6):909-922.
[121] Hauser A, Thieme M, Saupe A, Heppke G, Krüerke D. Surface-Imaging of Frozen Blue Phases in a Discotic Liquid Crystal with Atomic Force Microscopy[J]. Journal of Materials Chemistry,1997,7(11):2223-2229.
[122] Pieranski P, Dubois-Violette E, Rothen F, Strzelecki L. Geometry of Kossel Lines in Colloidal Crystals[J]. Journal de Physique,1981,42(1):53-60.
[123] Takahashi M, Ohkawa T, Yoshida H, Fukuda J, Kikuchi H, Ozaki M. Orientation of Liquid Crystalline Blue Phases on Unidirectionally Orienting Surfaces[J]. Journal of Physics D: Applied Physics,2018,51(10):104003.
[124] Jin H M, Li X, Dolan J A, Kline R J, Martinez-Gonzalez J A, Ren J, Zhou C, de Pablo J J, Nealey P F. Soft Crystal Martensites: An in Situ Resonant Soft X-Ray Scattering Study of a Liquid Crystal Martensitic Transformation[J]. Science Advances,2020,6(13):5986.
[125] Qin L, Liu X, He K, Yu G, Yuan H, Xu M, Li F, Yu Y. Geminate Labels Programmed by Two-Tone Microdroplets Combining Structural and Fluorescent color[J]. Nat Commun,2021,12(1):699.
[126] Lai X, Ren Q, Vogelbacher F, Sha W E I, Hou X, Yao X, Song Y, Li M. Bioinspired Quasi-3D Multiplexed Anti-Counterfeit Imaging via Self-Assembled and Nanoimprinted Photonic Architectures[J]. Adv Mater,2022,34(3):2107243.

所在学位评定分委会
电子与电气工程系
国内图书分类号
TB383
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/403037
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
续晓婉. 蓝相液晶晶格结构调控及显示/防伪器件研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849549-续晓婉-电子与电气工程(10960KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[续晓婉]的文章
百度学术
百度学术中相似的文章
[续晓婉]的文章
必应学术
必应学术中相似的文章
[续晓婉]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。