[1] Laurent B, Rajaa B P, Cécile S, et al. Actin dynamics, architecture, and mechanics in cell motility[J].Physiological Reviews, 2014, 94(1): 235-63.
[2] Higgs H N. Discussing the morphology of actin filaments in lamellipodia[J]. Trends in Cell Biology,2011, 21(1): 2-4.
[3] R Dyche M. The instability of stabilization[J]. Proceedings of the National Academy of Sciences ofthe United States of America, 2012, 109(27): 10743-10744.
[4] Holmes K C, Popp D, ., Gebhard W, ., et al. Atomic model of the actin filament[J]. Nature, 1990,347(6288): 44-49.
[5] Sept D, Elcock A H, Mccammon J A. Computer simulations of actin polymerization can explain thebarbed-pointed end asymmetry 1[J]. Journal of Molecular Biology, 1999, 294(5): 1181-1189.
[6] Wegner A, Engel J. Kinetics of the cooperative association of actin to actin filament[J]. BiophysicalChemistry, 1975, 3(3): 215-225.
[7] Laurent B, Pollard T D. Hydrolysis of ATP by polymerized actin depends on the bound divalent cationbut not profilin[J]. Biochemistry, 2002, 41(2): 597-602.
[8] Blanchoin L, ., Pollard T D. Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin)with actin filaments[J]. Journal of Biological Chemistry, 1999, 274(22): 15538-46.
[9] Pollard T D, Blanchoin L, Mullins R D. Molecular mechanisms controlling actin filament dynamics innonmuscle cells[J]. Annu.rev.biophys Biomol.struct, 2000, 29(1): 545.
[10] Pollard T D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actinfilaments[J]. Journal of Cell Biology, 1986, 103(6): 2747-2754.
[11] Mullins R D, Stafford W F, Pollard T D. Structure, subunit topology, and actin-binding activity of theArp2/3 complex from Acanthamoeba[J]. Journal of Cell Biology, 1997, 136(2): 331-343.
[12] Robinson R C, Turbedsky K, ., Kaiser D A, et al. Crystal structure of Arp2/3 complex[J]. Science,2001, 294(5547): 1679-1684.
[13] Svitkina T M, Borisy G G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendriticorganization and treadmilling of actin filament array in lamellipodia[J]. Journal of Cell Biology, 1999,145(5): 1009-1026.
[14] Weinberg J, Drubin D G. Clathrin-mediated endocytosis in budding yeast[J]. Trends in Cell Biology,2012, 22(1): 1-13.
[15] Kexi Y, Rong L. Actin cytoskeleton in cell polarity and asymmetric division during mouse oocytematuration[J]. Cell Motility & the Cytoskeleton, 2012, 69(10): 727-737.
[16] Frischknecht F, ., Moreau V, ., R?Ttger S, ., et al. Actin-based motility of vaccinia virus mimicsreceptor tyrosine kinase signalling[J]. Nature, 1999, 401(6756): 926.
[17] Cameron L A, Svitkina T M, Vignjevic D, et al. Dendritic organization of actin comet tails[J].Current Biology Cb, 2001, 11(2): 130-135.
[18] Hn H, Td P. Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins[J]. TheJournal of biological chemistry, 1999, 274(46): 32531-32534.
[19] Achard V, Martiel J-L, Michelot A, et al. A "Primer"-Based Mechanism Underlies Branched ActinFilament Network Formation and Motility[J]. Current Biology: CB, 2010, 20(5): 423-428.
[20] C S, C W, Jv S, et al. Reply: Visualizing branched actin filaments in lamellipodia by electrontomography[J]. Nature cell biology, 2011, 13(9): 1013-1014.
[21] Rh. I, Lm. M. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate theactincytoskeleton through the Arp2/3 complex[J]. Current Biology: CB, 1998, 8(25): 1347-1356.
[22] L B, Td P, Hn H, et al. Scar, a WASp-related protein, activates nucleation of actin filaments by theArp2/3 complex[J]. Proceedings of the National Academy of Sciences of the United States of America.,1999, 96(7): 3739-3744.
[23] Rotty J D, Wu C, Bear J E. New insights into the regulation and cellular functions of the ARP2/3complex[J]. Nature reviews: molecular cell biology, 2013, 14(1): 7-12.
[24] R D, Z G, F K, et al. Actin-bound structures of Wiskott-Aldrich syndrome protein(WASP)-homology domain 2 and the implications for filament assembly[J]. Proceedings of the NationalAcademy of Sciences of the United States of America., 2005, 102(46): 16644-16649.
[25] O A, Rd M. Capping protein increases the rate of actin-based motility by promoting filamentnucleation by the Arp2/3 complex[J]. Cell, 2008, 133(5): 841-851.
[26] A B-S, L H, Y B-K, et al. Reconstitution of the transition from lamellipodium to filopodium in amembrane-free system[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica., 2006, 103(13): 4906-4911.
[27] Boujemaa-Paterski R, Manzi J, Sykes C, et al. How actin network dynamics control the onset ofactin-based motility[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica., 2012, 109(36): 14440-14445.
[28] D P, R B, D D, et al. The Arp2/3 complex branches filament barbed ends: functional antagonism withcapping proteins[J]. Nature Cell Biology, 2000, 2(7).
[29] Cambier T, Reymann A-C, Martiel J-L. Nucleation geometry governs ordered actin networksstructures[J]. Nature materials, 2010, 9(10): 827-832.
[30] L B, J A K, N H H, et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3complex and WASP/Scar proteins[J]. Nature, 2000, 404(6781).
[31] Leduc P, Guerin C, Galland R. Fabrication of three-dimensional electrical connections by means ofdirected actin self-organization[J]. Nature materials, 2013, 12(5): 416-421.
[32] Bamburg J R, Harris H E, Weeds A G. Partial purification and characterization of an actindepolymerizing factor from brain[J]. Febs Letters, 1980, 121(1): 178-182.
[33] Bernstein B W, Bamburg J R. ADF/Cofilin: a functional node in cell biology[J]. Trends in CellBiology, 2010, 20(4).
[34] Elena I, Ying H J, Dyche M R. Arp2/3 complex ATP hydrolysis promotes lamellipodial actin networkdisassembly but is dispensable for assembly[J]. The Journal of cell biology, 2013, 200(5).
[35] Anne-Cécile R, Cristian S, Christophe G, et al. Turnover of branched actin filament networks bystochastic fragmentation with ADF/cofilin[J]. Molecular Biology of the Cell (Online), 2011, 22(14).
[36] Gx. X, V. L, D. P, et al. ACTIN DEPOLYMERIZING FACTOR (ADF/COFILIN) ENHANCES THERATE OF FILAMENT TURNOVER - IMPLICATION IN ACTIN-BASED MOTILITY[J]. The Journalof Cell Biology, 1997, 136(6): 1307-1322.
[37] Anthony B, Kevin E, G F R. ERM proteins and merlin: integrators at the cell cortex[J]. NatureReviews. Molecular Cell Biology, 2002, 3(8).
[38] Chaudhry F, Breitsprecher D, Little K, et al. Srv2/cyclase-associated protein forms hexamericshurikens that directly catalyze actin filament severing by cofilin[J]. Molecular biology of the cell, 2013,24(1): 31-41.
[39] E A, Td P. Mechanism of actin filament turnover by severing and nucleation at differentconcentrations of ADF/cofilin[J]. Molecular cell, 2006, 24(1): 13-23.
[40] J A K, D P T. Direct real-time observation of actin filament branching mediated by Arp2/3 complexusing total internal reflection fluorescence microscopy[J]. PROCEEDINGS OF THE NATIONALACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98(26).
[41] Fujiwara I, Suetsugu S, Uemura S, et al. Visualization and force measurement of branching byArp2/3 complex and N-WASP in actin filament[J]. Biochemical and Biophysical ResearchCommunications, 2002, 293(5).
[42] Elam W A, Kang H, Cruz E M D L. Biophysics of actin filament severing by cofilin[J]. FEBSLetters, 2013, 587(8).
[43] R M B, Laurent B, Jean-Louis M, et al. Cofilin increases the bending flexibility of actin filaments:implications for severing and cell mechanics[J]. JMB Online, 2008, 381(3).
[44] I M. An actin-depolymerizing protein (depactin) from starfish oocytes: properties and interactionwith actin[J]. The Journal of Cell Biology, 1983, 97(5 Pt 1).
[45] Td P, L B. Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actinfilaments[J]. The Journal of biological chemistry, 1999, 274(22): 15538-15546.
[46] Suarez C, Roland J, Boujemaa-Paterski R, et al. Cofilin Tunes the Nucleotide State of ActinFilaments and Severs at Bare and Decorated Segment Boundaries[J]. Current Biology: CB, 2011, 21(10):862-868.
[47] C C, Cc B, Td P. Cofilin dissociates Arp2/3 complex and branches from actin filaments[J]. CurrentBiology: CB, 2009, 19(7): 537-545.
[48] Simone K, R B A. Contraction mechanisms in composite active actin networks[J]. PL o S One, 2012,7(7).
[49] Murrell M P, Gardel M L. F-actin buckling coordinates contractility and severing in a biomimeticactomyosin cortex[J]. Proceedings of the National Academy of Sciences of the United States of America.,2012, 109(51): 20820-20825.
[50] Ishikawa R, Sakamoto T, Ando T, et al. Polarized actin bundles formed by human fascin‐ 1: theirsliding and disassembly on myosin II and myosin V in vitro[J]. Journal of Neurochemistry, 2003, 87(3).
[51] Haviv L, Gillo D, Backouche F, et al. A Cytoskeletal Demolition Worker: Myosin II Acts as an ActinDepolymerization Agent[J]. Journal of Molecular Biology, 2008, 375(2).
[52] Blanchoin L, Martiel J-L, Cao W, et al. Actin Network Architecture Can Determine Myosin MotorActivity[J]. Science, 2012, 336(Jun.8 TN.6086): 1310-1314.
[53] Takako I, Lilly M A. missing oocyte encodes a highly conserved nuclear protein required for themaintenance of the meiotic cycle and oocyte identity in Drosophila[J]. Development, 2004, 131(5):1029-39.
[54] Bar-Peled L, Sabatini D M. A tumor suppressor complex with GAP activity for the RAG GTPasesthat signal amino acid sufficiency to mTORC1[J]. Science, 2013, 340(6136): 1100-1106.
[55] Chantranupong L, Scaria S, Saxton R, et al. The CASTOR Proteins Are Arginine Sensors for themTORC1 Pathway[J]. Cell, 2016, 165(1): 153-164.
[56] Schapira M, Tyers M, Torrent M, et al. WD40 repeat domain proteins: a novel target class?[J].Nature Reviews Drug Discovery, 2017, 16(11).
[57] Wolfe S A, Grant R A, Elrod-Erickson M, et al. Beyond the “Recognition Code” : Structures of TwoCys 2 His 2 Zinc Finger/TATA Box Complexes[J]. Structure, 2001, 9(8): 717-723.
[58] Laity J H, Lee B M, Wright P E. Zinc finger proteins: new insights into structural and functionaldiversity[J]. Current Opinion in Structural Biology, 2001, 11(1): 39-46.
[59] Leon O, Roth M. Zinc fingers: DNA binding and protein-protein interactions[J]. Biological Research,2000, 33(1): 21-30.
[60] Klug A, ., Schwabe J W. Protein motifs 5. Zinc fingers[J]. Faseb Journal, 1995, 9(8): 597.
[61] Krishna S S, Majumdar Igrishin N V. Structural classification of zinc fingers: survey and summary[J].Nucleic Acids Research, 2003, 31(2): 532-550.
[62] Maciver S K, Hussey P J. The ADF/cofilin family: actin-remodeling proteins[J]. Genome Biology,2002, 3(5): reviews3007.1.
[63] Loisel T P, Boujemaa R, ., Pantaloni D, ., et al. Reconstitution of actin-based motility of Listeria andShigella using pure proteins[J]. Nature, 1999, 401(6753): 613-616.
[64] Voytek O, Drubin D G. Cofilin recruitment and function during actin-mediated endocytosis dictatedby actin nucleotide state[J]. Journal of Cell Biology, 2007, 178(7): 1251-1264.
[65] Gian Carlo B, Gurniak C B, Emerald P, et al. N-cofilin is associated with neuronal migrationdisorders and cell cycle control in the cerebral cortex[J]. Genes & Development, 2007, 21(18):2347-2357.
[66] Gurniak C B, Emerald P, Walter W. The actin depolymerizing factor n-cofilin is essential for neuraltube morphogenesis and neural crest cell migration[J]. Developmental Biology, 2005, 278(1): 231-241.
[67] Satu K, Cristina C, Quentin M, et al. Actin depolymerizing factors cofilin1 and destrin are requiredfor ureteric bud branching morphogenesis[J]. Differentiation, 2010, 80(10): e1001176.
[68] Kanellos G, Zhou J, Patel H, et al. ADF and Cofilin1 Control Actin Stress Fibers, Nuclear Integrity,and Cell Survival[J]. Cell Reports, 2015, 13(9): 1949-1964.
[69] Weigang W, Robert E, John C. The cofilin pathway in breast cancer invasion and metastasis[J].Nature Reviews Cancer, 2007, 7(6): 429-440.
[70] Bamburg J R, Bernstein B W. Actin dynamics and cofilin-actin rods in Alzheimer disease[J].Cytoskeleton, 2016, 73(9): 477-497.
[71] Vartiainen M K, Mustonen T, Mattila P K, et al. The three mouse actin-depolymerizingfactor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics[J]. Molecular Biologyof the Cell, 2002, 13(1): 183-194.
[72] Yeoh S, Pope B, Mannherz H G, et al. Determining the differences in actin binding by human ADFand cofilin 1[J]. Journal of Molecular Biology, 2002, 315(4): 911-925.
[73] Gurniak C B, Perlas E, Witke W. The actin depolymerizing factor n-cofilin is essential for neuraltube morphogenesis and neural crest cell migration[J]. Developmental Biology, 2005, 278(1): 231-241.
[74] Chin S M, Jansen S, Goode B L. TIRF microscopy analysis of human Cof1, Cof2, and ADF effectson actin filament severing and turnover[J]. Journal of Molecular Biology, 2016, 428(8): 1604-1616.
[75] Zuchero J B, Fu M M, Sloan S A, et al. CNS myelin wrapping is driven by actin disassembly[J].Developmental Cell, 2015, 34(2): 152-167.
[76] Scott R W, Olson M F. LIM kinases: function, regulation and association with human disease[J].Journal of Molecular Medicine, 2007, 85(6): 555-568.
[77] Toshima J, Toshima J Y, Amano T, et al. Cofilin phosphorylation by protein kinase testicular proteinkinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation[J]. MolecularBiology of the Cell, 2001, 12(4): 1131.
[78] Ohashi K, ., Nagata K, ., Maekawa M, ., et al. Rho-associated kinase ROCK activates LIM-kinase 1by phosphorylation at threonine 508 within the activation loop[J]. Journal of Biological Chemistry, 2000,275(5): 3577.
[79] Miho K, Michiru N, Toshiaki M, et al. MAPKAPK-2-mediated LIM-kinase activation is critical forVEGF-induced actin remodeling and cell migration[J]. Embo Journal, 2014, 25(4): 713-726.
[80] Niwa R, Nagata-Ohashi K, Takeichi M, et al. Control of Actin Reorganization by Slingshot, a Familyof Phosphatases that Dephosphorylate ADF/Cofilin[J]. Cell, 2002, 108(2): 233-246.
[81] Antje G, J?Rg B, Bokoch G M. Chronophin, a novel HAD-type serine protein phosphatase, regulatescofilin-dependent actin dynamics[J]. Nature Cell Biology, 2005, 7(1): 21.
[82] Ambach A, Saunus J, Konstandin M, et al. The serine phosphatases PP1 and PP2A associate withand activate the actin-binding protein cofilin in human T lymphocytes[J]. European Journal ofImmunology, 2015, 30(12): 3422-3431.
[83] Zhao H, Hakala M, Lappalainen P. ADF/Cofilin Binds Phosphoinositides in a Multivalent Manner toAct as a PIP-Density Sensor[J]. Biophysical Journal, 2010, 98(10): 2327-2336.
[84] Ghassan M, Lilian S, Vera D M, et al. Phospholipase C and cofilin are required for carcinoma celldirectionality in response to EGF stimulation[J]. Journal of Cell Biology, 2004, 166(5): 697-708.
[85] Jacco V R, Xiaoyan S, Wies V R, et al. EGF-induced PIP2 hydrolysis releases and activates cofilinlocally in carcinoma cells[J]. Journal of Cell Biology, 2007, 179(6): 1247-1259.
[86] Xiaoyan S, Xiaoming C, Hideki Y, et al. Initiation of cofilin activity in response to EGF is uncoupledfrom cofilin phosphorylation and dephosphorylation in carcinoma cells[J]. Journal of Cell Science, 2006,119(14): 2871-81.
[87] Scott R W, Steven H, Diane C, et al. LIM kinases are required for invasive path generation by tumorand tumor-associated stromal cells[J]. Journal of Cell Biology, 2010, 191(1): 169-185.
[88] Kanellos G, Frame M C. Cellular functions of the ADF/cofilin family at a glance[J]. Journal of CellScience, 2016, 129(17): 3211.
[89] Christian F, Gabriela B, Laura D, et al. Cofilin is a pH sensor for actin free barbed end formation:role of phosphoinositide binding[J]. Journal of Cell Biology, 2008, 183(5): 865-879.
[90] Magalhaes M a O, Larson D R, Mader C C, et al. Cortactin phosphorylation regulates cell invasionthrough a pH-dependent pathway[J]. Journal of Cell Biology, 2011, 195(5): 903.
[91] Stanyon C A, Bernard O. LIM-kinase1[J]. International Journal of Biochemistry & Cell Biology,1999, 31(3-4): 389.
[92] Dan C, ., Kelly A, ., Bernard O, ., et al. Cytoskeletal changes regulated by the PAK4 serine/threoninekinase are mediated by LIM kinase 1 and cofilin[J]. Journal of Biological Chemistry, 2001, 276(34):32115-32121.
[93] Edwards D C, Gill G N. Structural features of LIM kinase that control effects on the actincytoskeleton[J]. Journal of Biological Chemistry, 1999, 274(16): 11352-61.
[94] Mezna M, Wong A C, Ainger M, et al. Development of a high-throughput screening method for LIMkinase 1 using a luciferase-based assay of ATP consumption[J]. Journal of Biomolecular Screening, 2012,17(4): 460-468.
[95] Agnew B J, Minamide L S, Bamburg J R. Reactivation of phosphorylated actin depolymerizingfactor and identification of the regulatory site[J]. Journal of Biological Chemistry, 1995, 270(29):17582-7.
[96] Ressad F, ., Didry D, ., Xia G X, et al. Kinetic analysis of the interaction of actin-depolymerizingfactor (ADF)/cofilin with G- and F-actins. Comparison of plant and human ADFs and effect ofphosphorylation[J]. Journal of Biological Chemistry, 1998, 273(33): 20894-20902.
[97] Hamill S, Lou H J, Turk B E, et al. Structural Basis for Noncanonical Substrate Recognition ofCofilin/ADF Proteins by LIM Kinases[J]. Molecular Cell, 2016, 62(3): 397-408.
[98] Goode B L, Sweeney M O, Eskin J A. GMF as an Actin Network Remodeling Factor[J]. Trends inCell Biology, 2018: S0962892418300722.
[99] Zuchero J B, Fu M M, Sloan S, et al. CNS Myelin Wrapping Is Driven by Actin Disassembly[J].Developmental Cell, 2015, 34(2): 152-167.
修改评论