中文版 | English
题名

二维铁磁材料 CrSiTe3的磁性表征及调控研究

其他题名
MAGNETIC CHARACTERIZATION AND MODULATION OF TWO-DIMENSIONAL FERROMAGNETIC MATERIAL CrSiTe3
姓名
姓名拼音
ZHANG Cheng
学号
11849467
学位类型
博士
学位专业
070205 凝聚态物理
学科门类/专业学位类别
07 理学
导师
黄丽
导师单位
物理系;量子科学与工程研究院
论文答辩日期
2022-06-01
论文提交日期
2022-10-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

   磁性材料构成了现代信息存储技术的基石,其中二维磁性材料具有维度低、柔韧、无悬挂键等优点,使其不仅成为研究在二维极限厚度下基本磁结构的理想模型,也构成了微尺度自旋电子器件、柔性电子学器件以及高密度堆叠磁存储器件的基石。为了向实际应用迈进,具有很强磁各向异性和更高居里温度的硬铁磁材料成为首选。然而,大部分的二维磁性材料居里温度相对较低,磁滞回线表现为多磁畴的软铁磁特性。本论文以居里温度为32.8 K的二维软铁磁材料CrSiTe3为研究对象,开展了改变层内以及层间磁性原子间的耦合作用调控体系磁性的实验研究,这对研究磁交换相互作用控制磁性的内在机理和拓宽二维磁性材料的应用领域具有深远的科学意义和实用价值。本论文的主要研究工作概述如下:

1)自主搭建了反射磁圆二色性测量系统和拉曼光谱系统,与金刚石对顶砧技术相结合,实现了材料在极低温、高压、强场条件下的原位综合表征。

2)成功制备出CrSiTe3单晶样品。测量结果表明,制备的CrSiTe3单晶属R3No. 148空间群CrSiTe3体材料表现出铁磁性,易磁化轴沿c轴方向,居里温度(Tc )为32.8 K。其磁性主要来源于材料中的三价Cr+3离子。

3)研究了二维铁磁材料CrSiTe3的磁性随厚度的演化。实验上利用反射磁圆二色性(RMCD)系统测量了170 nm-1.5 nm厚度的CrSiTe3材料的磁滞回线。实验结果表明厚度大于10 nm的样品都表现为具有多磁畴的软铁磁特性。但随着厚度的减小饱和磁场随之减小,而当厚度减小到7-8 nm时,CrSiTe3材料从软铁磁态转变成了具有单磁畴的硬铁磁态。而当样品厚度在3 nm以下时,铁磁性消失。拉曼光谱测量结果表明,材料减薄晶体结构不变。硬铁磁的出现主要归因于样品厚度在10 nm以下限制了磁畴壁的形成而表现为单磁畴态。实验结果还表明当厚度小于5 nm时,材料的居里温度明显降低,这暗示着材料由3D铁磁向2D铁磁体的过渡。利用实验数据拟合出临界厚度约为4.69 nm

    4)研究了静水压对二维铁磁材料CrSiTe3铁磁性的调控。实验上结合了金刚石对顶砧(DAC)技术和原位高压磁圆二色性测量系统研究了CrSiTe3材料在压力作用下铁磁性的演化过程。研究结果表明,压强小于4 GPa时,体系表现出与常压下同样的软铁磁特性。压强在4 GPa8 GPa时,体系由软铁磁态转变成硬铁磁态,并伴随着矫顽场和居里温度的显著升高。

    5)第一性原理计算研究了压力增强CrSiTe3铁磁性的内在机理。平均场理论表明铁磁性系统的居里温度正比于原子间的磁交换相互作用。计算结果揭示,系统中的第一、第二和第三最近邻交换相互作用J1、J2、J3 因子以及层间最近邻交换相互作用因子J4在压力作用下增大,其中J1的作用最为显著,是CrSiTe3材料体系铁磁性随压强增强的主导因素。

其他摘要

Magnetic materials constitute the cornerstone of modern data storage technologies. In particular, two-dimensional (2D) magnetic materials have recently attracted enormous attention due to their extraordinary physical properties, such as low dimensionality, flexibility, free of dangling bonds, and semiconductor properties. It does not only provide a platform to study the basic magnetic structure and ordering in the 2D limit, but also provides raw material library in the manufacture of microscale spintronic devices, flexible electronics, and high-density stacked magnetic memory devices. For practical applications, hard ferromagnetic states with strong magnetic anisotropy and higher Curie temperatures are preferred properties. However, most of the 2D magnetic materials show a soft ferromagnetic behavior with a relatively low Curie temperature and many multiple domains. In this thesis, we focus on a 2D soft ferromagnet CrSiTe3, with a Curie temperature of 32.8 K. By modulating the interlayer and intralayer coupling, we studied the evolution of magnetic properties and explored the plausible physical mechanism. Our studies have far-reaching scientific value for exploring fundamental physics in 2D magnets and open up a new possibility for searching high-temperature magnets in the 2D limit. The main research results are summarized as follows:

(1) Home-made reflection magnetic circular dichroism measurement system and Raman spectroscopy system, combined with diamond anvil technology, realized in-situ comprehensive characterization of materials under extremely low temperature, high pressure and strong field conditions.

(1) CrSiTe3 single crystals were successfully grown. The measurement results show that the CrSiTe3 single crystal belongs to the R3(No. 148) space group. It exhibits ferromagnetic property, with an easy axis along the c axis direction, and a Curie temperature (Tc) of 32.8 K. Its ferromagnetism mainly comes from the trivalent Cr+3 ions.

(2) We have studied the evolution of magnetism by decreasing the thickness in 2D ferromagnet CrSiTe3. In the experiment, the magnetism of CrSiTe3 with the thickness from 170 nm to 1.5 nm was measured using the reflected magnetic circular dichroism (RMCD). The results show that samples with a thickness greater than 10 nm exhibit soft ferromagnetic properties with many multiple domains, and the corresponding saturation magnetic field decreases as the thickness decreases. when the thickness approaches 8 or 7 nm, it transforms from a soft-ferromagnetic state to a hard-ferromagnetic state with a single magnetic domain; but below 3 nm, the ferromagnetism disappears. The appearance of hard-ferromagnetic is mainly attributed to the fact that the thickness of the sample is below 10 nm, which limits the formation of magnetic domain walls and exhibits a single magnetic domain state. Moreover, the thickness-dependent Curie temperature also shows a magnetic transition from three-dimensional to two-dimensional ferromagnetic ordering, with a critical thickness of around 4.7 nm.

(3) We have studied the evolution of ferromagnetism in CrSiTe3 by hydrostatic pressure. The ferromagnetism of CrSiTe3 flake under pressure was studied experimentally by combining diamond counter-anvil (DAC) technology and in-situ high-pressure magnetic circular dichroism spectroscopy. The results show that when the pressure less than 4 GPa, CrSiTe3 flake exhibits soft ferromagnetic properties which are the same as that at normal pressure. When the pressure is between 4 GPa and 8 GPa, it changes from a soft ferromagnetic state to a hard ferromagnetic state, accompanied by a significant increase of the coercive field and Curie temperature.

(4) Density functional theory (DFT) calculations to explain the enhancement of ferromagnetic properties under external pressure. The Mean-field theory reveals the proportional relationship between the exchange interaction and transition temperature. Our results also show that the first, second, and third nearest-neighbor intralayer exchange interactions J1J2J3 factors and the interlayer nearest-neighbor exchange interaction factor J4, increase with increasing pressure, among which J1 dominates the magnetic exchange interaction and contributes to the enhancement of ferromagnetic properties.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2018
学位授予年份
2022-07
参考文献列表

[1] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys. Rev. B 1989, 39 (7), 4828-4830.
[2] Moodera J S, Kinder L R, Wong T M, et al. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions[J]. Physical Review Letters 1995, 74 (16), 3273-3276.
[3] Berger L. Emission of spin waves by a magnetic multilayer traversed by a current[J]. Phys. Rev. B 1996, 54 (13), 9353-9358.
[4] Zhang S, Xu R, Luo N, et al. Two-dimensional magnetic materials: structures, properties and external controls[J]. Nanoscale 2021, 13 (3), 1398-1424.
[5] Liu Z, Deng L, Peng B. Ferromagnetic and ferroelectric two-dimensional materials for memory application[J]. Nano Research 2021, 14 (6), 1802-1813.
[6] Huang B, Clark G, Navarro M E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature 2017, 546 (7657), 270-273.
[7] Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature 2017, 546 (7657), 265-269.
[8] Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature materials 2018, 17 (9), 778.
[9] Li Q, Yang M, Gong C, et al. Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature[J]. Nano Letters 2018, 18 (9), 5974-5980.
[10] Hu X, Zhao Y, Shen X, et al. Enhanced Ferromagnetism and Tunable Magnetism in Fe3GeTe2 Monolayer by Strain Engineering[J]. ACS Applied Materials & Interfaces 2020, 12 (23), 26367-26373.
[11] Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J]. Nature 2018, 563 (7729), 94-99.
[12] Verzhbitskiy I A, Kurebayashi H, Cheng H, et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating[J]. Nature Electronics 2020, 3 (8), 460-465.
[13] Wang K, Hu T, Jia F, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering[J]. Applied Physics Letters 2019, 114 (9), 092405.
[14] Lohmann M, Su T, Niu B, et al. Probing Magnetism in Insulating Cr2Ge2Te6 by Induced Anomalous Hall Effect in Pt[J]. Nano Letters 2019, 19 (4), 2397-2403.
[15] Sun Z, Yi Y, Song T, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3[J]. Nature 2019, 572 (7770), 497-501.
[16] Li T, Jiang S, Sivadas N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3[J]. Nature Materials 2019, 18 (12), 1303-1308.
[17] Mondal S, Kannan M, Das M, et al. Effect of hydrostatic pressure on ferromagnetism in two-dimensional CrI3[J]. Phys. Rev. B 2019, 99 (18), 180407.
[18] Coak M J, Jarvis D M, Hamidov H, et al. Tuning dimensionality in van-der-Waals antiferromagnetic Mott insulatorsTMPS3[J]. Journal of Physics: Condensed Matter 2019, 32 (12), 124003.
[19] Kim K, Lim S Y, Lee J U, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3[J]. Nature Communications 2019, 10 (1), 345.
[20] Kang S, Kim K, Kim B H, et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3[J]. Nature 2020, 583 (7818), 785-789.
[21] Vaclavkova D, Delhomme A, Faugeras C, et al. Magnetoelastic interaction in the two-dimensional magnetic material MnPS3 studied by first principles calculations and Raman experiments[J]. 2D Materials 2020, 7 (3), 035030.
[22] Bedoya P A, Ji J R, Pandeya A K, et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer[J]. Science 2021, 374 (6567), 616-620.
[23] Kim H H, Yang B, Li S, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides[J]. PNAS 2019, 116 (23), 11131-11136.
[24] Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3[J]. Nature Nanotechnology 2018, 13 (7), 544-548.
[25] Wang X, Li Z, Zhang M, et al. Pressure-induced modification of the anomalous Hall effect in layered Fe3GeTe2[J]. Phys. Rev. B 2019, 100 (1), 014407.
[26] Zhang S, Zou X, Cheng H. Mechanical-electro-magnetic coupling in strained bilayer CrI3[J]. Science China Technological Sciences 2020, 63 (7), 1265-1271.
[27] Zhang L, Huang X, Dai H, et al. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures[J]. Advanced Materials 2020, 32 (38), 2002032.
[28] Wang H, Liu Y, Wu P, et al. Above Room-Temperature Ferromagnetism in Wafer-Scale Two-Dimensional van der Waals Fe3GeTe2 Tailored by a Topological Insulator[J]. ACS Nano 2020, 14 (8), 10045-10053.
[29] Ji H, Stokes R A, Alegria L D, et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators[J]. Journal of Applied Physics 2013, 114 (11), 114907.
[30] Liu B, Zou Y, Zhang L, et al. Critical behavior of the quasi-two-dimensional semiconducting ferromagnet CrSiTe3[J]. Scientific Reports 2016, 6 (1), 33873.
[31] Klimovskikh I I, Otrokov M M, Estyunin D, et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3) mtopological insulators family[J]. npj Quantum Materials 2020, 5 (1), 54.
[32] Ron A, Zoghlin E, Balents L, et al. Dimensional crossover in a layered ferromagnet detected by spin correlation driven distortions[J]. Nature Communications 2019, 10 (1), 1654.
[33] Tan C, Lee J, Jung S G, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2[J]. Nature Communications 2018, 9 (1), 1554.
[34] Weiss P. The molecular field hypothesis and ferromagnetism[J]. J. Phys. Radium 1907, 6, 661.
[35] Gong C, Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science 2019, 363 (6428), eaav4450.
[36] Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology 2019, 14 (5), 408-419.
[37] Mermin N D, Wagner H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models[J]. Physical Review Letters 1966, 17 (22), 1133-1136.
[38] Sangwan V K, Hersam M C. Electronic Transport in Two-Dimensional Materials[J]. Annual Review of Physical Chemistry 2018, 69 (1), 299-325.
[39] Zhang X, Hou L, Ciesielski A, et al. 2D Materials Beyond Graphene for High-Performance Energy Storage Applications[J]. Advanced Energy Materials 2016, 6 (23), 1600671.
[40] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science 2004, 306 (5696), 666-669.
[41] Zhen Z, Zhu H. Structure and Properties of Graphene[M]. In Graphene, Academic Press, 2018, 1-12.
[42] Su T, Qin Z, Ji H, et al. An overview of photocatalysis facilitated by 2D heterojunctions[J]. Nanotechnology 2019, 30 (50), 502002.
[43] He H, Guo Z, Wen Y, et al. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds[J]. Analytica Chimica Acta 2019, 1090, 1-22.
[44] Jiang C, Xu W, Rasmita A, et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures[J]. Nature Communications 2018, 9 (1), 753.
[45] Mak K F, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology 2012, 7 (8), 494-498.
[46] Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology 2012, 7, 490.
[47] Li M Y, Chen C H, Shi Y, et al. Heterostructures based on two-dimensional layered materials and their potential applications[J]. Materials Today 2016, 19 (6), 322-335.
[48] Cheng R, Li D, Zhou H, et al. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes[J]. Nano Letters 2014, 14 (10), 5590-5597.
[49] Li M Y, Pu J, Huang J K, et al. Self-Aligned and Scalable Growth of Monolayer WSe2–MoS2 Lateral Heterojunctions[J]. 2018, 28 (17), 1706860.
[50] Zhao Y, Xu K, Pan F, et al. Doping, Contact and Interface Engineering of Two-Dimensional Layered Transition Metal Dichalcogenides Transistors[J]. Advanced Functional Materials 2017, 27 (19), 1603484.
[51] Zhang K, Feng S, Wang J, et al. Manganese doping of monolayer MoS2: the substrate is critical[J]. Nano letters 2015, 15 (10), 6586-6591.
[52] Wang Z, Chiu Y H, Hong K, et al. Electrical tuning of interlayer exciton gases in WSe2 bilayers[J]. Nano letters 2017, 18 (1), 137-143.
[53] Ji J, Zhang A, Xia T, et al. Strain-modulated excitonic gaps in mono-and bi-layer MoSe2[J]. 2016, 25 (7), 077802.
[54] Zhang Q, Chang Z, Xu G, et al. Strain relaxation of monolayer WS2 on plastic substrate[J]. 2016, 26 (47), 8707-8714.
[55] Ahn G H, Amani M, Rasool H, et al. Strain-engineered growth of two-dimensional materials[J]. Nature communications 2017, 8 (1), 608.
[56] Gonzalezherrero H, Gomezrodriguez J M, Mallet P, et al. Atomic-scale control of graphene magnetism by using hydrogen atoms[J]. Science 2016, 352 (6284), 437-441.
[57] Nair R, Sepioni M, Tsai I, et al. Spin-half paramagnetism in graphene induced by point defects[J]. Nature Physics 2012, 8 (3), 199-202.
[58] Mccreary K M, Swartz A, Han W, et al. Magnetic moment formation in graphene detected by scattering of pure spin currents[J]. Physical Review Letters 2012, 109 (18), 186604.
[59] 蒋小红, 秦泗晨, 幸子越等. 二维磁性材料的物性研究及性能调控[J]. 物理学报 2021, 70 (12), 127801.
[60] Chen W, Sun Z, Wang Z, et al. Direct observation of van der Waals stacking-dependent interlayer magnetism[J]. Science 2019, 366 (6468), 983-987.
[61] Seyler K L, Zhong D, Klein D R, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator[J]. Nature Physics 2018, 14 (3), 277-281.
[62] McGuire M A, Dixit H, Cooper V R, et al. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3[J]. Chemistry of Materials 2015, 27 (2), 612-620.
[63] Morosin B, Narath A. X‐Ray Diffraction and Nuclear Quadrupole Resonance Studies of Chromium Trichloride[J]. The Journal of Chemical Physics 1964, 40 (7), 1958-1967.
[64] Klein D R, MacNeill D, Song Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nature Physics 2019, 15 (12), 1255-1260.
[65] McGuire M A. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides[J]. Crystal 2017, 7 (5), 121.
[66] McGuire M A, Clark G, Kc S, et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals[J]. Physical Review Materials 2017, 1 (1), 014001.
[67] Tsubokawa I. On the Magnetic Properties of a CrBr3 Single Crystal[J]. Journal of the Physical Society of Japan 1960, 15 (9), 1664-1668.
[68] Zhao D, Zhang L, Malik I A, et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films[J]. Nano Research 2018, 11 (6), 3116-3121.
[69] Zhang X, Lu Q, Liu W, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films[J]. Nature Communications 2021, 12 (1), 2492.
[70] McGuire M A, Garlea V O, Kc S, et al. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3[J]. Phys. Rev. B 2017, 95 (14), 144421.
[71] Wang M, Kang L, Su J, et al. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers[J]. Nanoscale 2020, 12 (31), 16427-16432.
[72] Meng L, Zhou Z, Xu M, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition[J]. Nature Communications 2021, 12 (1), 809.
[73] Wen Y, Liu Z, Zhang Y, et al. Tunable Room-Temperature Ferromagnetism in Two-Dimensional Cr2Te3[J]. Nano Letters 2020, 20 (5), 3130-3139.
[74] Liu W, Dai Y, Yang Y E, et al. Critical behavior of the single-crystalline van der Waals bonded ferromagnet Cr2Ge2Te6[J]. Phys. Rev. B 2018, 98 (21), 214420.
[75] Lin Z, Lohmann M, Ali Z A, et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6[J]. Physical Review Materials 2018, 2 (5), 051004.
[76] Williams T J, Aczel A A, Lumsden M D, et al. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3[J]. Physical Review B 2015, 92 (14), 144404.
[77] Casto L D, Clune A J, Yokosuk M O, et al. Strong spin-lattice coupling in CrSiTe3[J]. APL Materials 2015, 3 (4), 041515.
[78] Xie Q, Liu Y, Wu M, et al. Two stage magnetization in van der Waals layered CrXTe3 (X = Si, Ge) single crystals[J]. Materials Letters 2019, 246, 60-62.
[79] Li Y F, Wang W, Guo W, et al. Electronic structure of ferromagnetic semiconductor CrGeTe3 by angle-resolved photoemission spectroscopy[J]. Phys. Rev. B 2018, 98 (12), 125127.
[80] Dilip B, Jun G, Naoka H, et al. Nearly room temperature ferromagnetism in pressure-induced correlated metallic state of van der Waals insulator CrGeTe3[J]. Physical Review Letters 2021.
[81] Siberchicot B, Jobic S, Carteaux V, et al. Band Structure Calculations of Ferromagnetic Chromium Tellurides CrSiTe3 and CrGeTe3[J]. The Journal of Physical Chemistry 1996, 100 (14), 5863-5867.
[82] Fang Y, Wu S, Zhu Z Z, et al. Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6[J]. Phys. Rev. B 2018, 98 (12), 125416.
[83] Wu S, Wang L, Gao B, et al. The direct observation of ferromagnetic domain of single crystal CrSiTe3[J]. AIP Advances 2018, 8 (5), 055016.
[84] Yang S, Zhang T, Jiang C. van der Waals Magnets: Material Family, Detection and Modulation of Magnetism, and Perspective in Spintronics[J]. Advance Science 2021, 8 (2), 2002488.
[85] Zhang J, Cai X, Xia W, et al. Unveiling Electronic Correlation and the Ferromagnetic Superexchange Mechanism in the van der Waals Crystal CrSiTe3 [J]. Physical Review Letters 2019, 123 (4), 047203.
[86] Milosavljević A, Šolajić A, Pešić J, et al. Evidence of spin-phonon coupling in CrSiTe3[J]. Phys. Rev. B 2018, 98 (10), 104306.
[87] Cai W, Sun H, Xia W, et al. Pressure-induced superconductivity and structural transition in ferromagnetic CrSiTe3[J]. Phys. Rev. B 2020, 102 (14), 144525.
[88] Huang B, McGuire M A, May A F, et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures[J]. Nature Materials 2020, 19 (12), 1276-1289.
[89] Moog E R, Bader S D. Smoke signals from ferromagnetic monolayers: p(1×1) Fe/Au(100)[J]. Superlattices and Microstructures 1985, 1 (6), 543-552.
[90] Liu S, Yuan X, Zou Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy[J]. 2D Materials and Applications 2017, 1 (1), 30.
[91] Wang Z, Sapkota D, Taniguchi T, et al. Tunneling Spin Valves Based on Fe3GeTe2/hBN/ Fe3GeTe2 van der Waals Heterostructures[J]. Nano Letters 2018, 18 (7), 4303-4308.
[92] Mogi M, Nakajima T, Ukleev V, et al. Large Anomalous Hall Effect in Topological Insulators with Proximitized Ferromagnetic Insulators[J]. Physical Review Letters 2019, 123 (1), 016804.
[93] Yao X, Gao B, Han M G, et al. Record High-Proximity-Induced Anomalous Hall Effect in (BixSb1–x)2Te3 Thin Film Grown on CrGeTe3 Substrate[J]. Nano Letters 2019, 19 (7), 4567-4573.
[94] Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect[J]. Reviews of Modern Physics 2010, 82 (2), 1539-1592.
[95] May A F, Ovchinnikov D, Zheng Q, et al. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2[J]. ACS Nano 2019, 13 (4), 4436-4442.
[96] Fox M. Optical properties of solids[M]. AAPT: 2001, 230-235.
[97] Burch K S, Mandrus D, Park J G. Magnetism in two-dimensional van der Waals materials[J]. Nature 2018, 563 (7729), 47-52.
[98] Mason W R. A Practical Guide to Magnetic Circular Dichroism Spectroscopy[M]. Wiley Interscience, 2007:1-48.
[99] Mak K F, Shan J, Ralph D C. Probing and controlling magnetic states in 2D layered magnetic materials[J]. Nature Reviews Physics 2019, 1 (11), 646-661.
[100] Instruments HPEM-100 Photoelectic Modulator User Manual. https://www.hindsinstruments.com/wp-content/uploads/PEM-100-User-Manual.pdf.
[101] 宋思宇, 于向前, 陈鸿飞等. 基于锁相放大原理的磁电传感信号放大器[J]. 仪表技术与传感器 2021, 38(12), 44-50.
[102] Han B, Gao X, Lv J, et al. Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances[J]. Advanced Materials 2018, 1801491.
[103] Saito Y, Nojima T, Iwasa Y. Highly crystalline 2D superconductors[J]. Nature Reviews Materials 2017, 2 (1), 1-18.
[104] Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields[J]. Nature Nanotechnology 2015, 10 (3), 209-220.
[105] Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor[J]. Nature Nanotechnology 2018, 13 (7), 554-559.
[106] Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets[J]. Nature Materials 2018, 17 (5), 406-410.
[107] 周鹭付磊二维过渡金属二硫属化合物的应力调控[J]. 科学通报 2019, 64 (17), 1817-1831.
[108] Tsutsui G, Mochizuki S, Loubet N, et al. Strain engineering in functional materials[J]. Aip Advances 2019, 9 (3), 12.
[109] Yun W S, Han S W, Hong S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X = S, Se, Te)[J]. Phys. Rev. B 2012, 85 (3), 033305.
[110] Bertolazzi S, Brivio J, Kis A. Stretching and Breaking of Ultrathin MoS2[J]. ACS Nano 2011, 5 (12), 9703-9709.
[111] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials 2017, 2, 17033.
[112] Niehues I, Schmidt R, Drüppel M, et al. Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors[J]. Nano Letters 2018, 18 (3), 1751-1757.
[113] Desai S B, Seol G, Kang J S, et al. Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe2[J]. Nano Letters 2014, 14 (8), 4592-4597.
[114] Hui Y Y, Liu X, Jie W, et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet[J]. ACS nano 2013, 7 (8), 7126-7131.
[115] Castellanos G A, Roldán R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2[J]. Nano letters 2013, 13 (11), 5361-5366.
[116] Song T, Fei Z, Yankowitz M, et al. Switching 2D magnetic states via pressure tuning of layer stacking[J]. Nature Materials 2019, 18 (12), 1298-1302.
[117] Jiang P, Wang C, Chen D, et al. Stacking tunable interlayer magnetism in bilayer CrI3[J]. Phys. Rev. B 2019, 99 (14), 144401.
[118] Sivadas N, Okamoto S, Xu X, et al. Stacking-Dependent Magnetism in Bilayer CrI3[J]. Nano Letters 2018, 18 (12), 7658-7664.
[119] Wang H, Xu R, Liu C, et al. Pressure-Dependent Intermediate Magnetic Phase in Thin Fe3GeTe2 Flakes[J]. The Journal of Physical Chemistry Letters 2020, 11 (17), 7313-7319.
[120] Wang Y, Wang C, Liang S J, et al. Strain-Sensitive Magnetization Reversal of a van der Waals Magnet[J]. Advanced Materials 2020, 32 (42), 2004533.
[121] Jiang S, Xie H, Shan J, et al. Exchange magnetostriction in two-dimensional antiferromagnets[J]. Nature Materials 2020, 19 (12), 1295-1299.
[122] Webster L, Yan J. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3[J]. Phys. Rev. B 2018, 98 (14).
[123] Li Z, Zhou B, Luan C. Strain-tunable magnetic anisotropy in two-dimensional Dirac half-metals: nickel trihalides[J]. RSC Advances 2019, 9 (61), 35614-35623.
[124] Dong X J, You J Y, Gu B, et al. Strain-Induced Room-Temperature Ferromagnetic Semiconductors with Large Anomalous Hall Conductivity in Two-Dimensional Cr2Ge2Se6[J]. Physical Review Applied 2019, 12 (1), 014020.
[125] Jayaraman A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics 1983, 55 (1), 65-108.
[126] Hirao N, Kawaguchi S I, Hirose K, et al. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8[J]. Matter and Radiation at Extremes 2020, 5 (1), 018403.
[127] Holtgrewe N, Greenberg E, Prescher C, et al. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS[J]. High Pressure Research 2019, 39 (3), 457-470.
[128] Matsumoto R, Hara H, Tanaka H, et al. Pressure-Induced Superconductivity in Sulfur-Doped SnSe Single Crystal Using Boron-Doped Diamond Electrode-Prefabricated Diamond Anvil Cell[J]. Journal of the Physical Society of Japan 2018, 87 (12), 124706.
[129] Xie J, Liu X, Zhang W, et al. Fragile Pressure-Induced Magnetism in FeSe Superconductors with a Thickness Reduction[J]. Nano Letters 2021, 21 (21), 9310-9317.
[130] Coak M J, Jarvis D M, Hamidov H, et al. Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3[J]. Physical Review X 2021, 11 (1), 011024.
[131] Mao H K, Xu J, Bell P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions[J]. Journal of Geophysical Research: Solid Earth 1986, 91 (B5), 4673-4676.
[132] Mao H K, Bell P M, Shaner J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. Journal of Applied Physics 1978, 49 (6), 3276-3283.
[133] Ragan D D, Gustavsen R, Schiferl D. Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K[J]. Journal of Applied Physics 1992, 72 (12), 5539-5544.
[134] Yen J, Nicol M. Temperature dependence of the ruby luminescence method for measuring high pressures[J]. Journal of Applied Physics 1992, 72 (12), 5535-5538.
[135] Fluorescense pressure calculation and thermocouple tools. https://millenia.cars.aps.anl.gov/gsecars/ruby/ruby.htm.
[136] Gong L, Zhang C, Nie A, et al. Epitaxial growth of large-grain-size ferromagnetic monolayer CrI3 for valley Zeeman splitting enhancement[J]. Nanoscale 2021, 13 (5), 2955-2962.
[137] Raman C V, Krishnan K S. A New Type of Secondary Radiation[J]. Nature 1928, 121 (3048), 501-502.
[138] Wu J, Xie L. Structural quantification for graphene and related two-dimensional materials by Raman spectroscopy[J]. Analytical Chemistry 2018, 91 (1), 468-481.
[139] Jin W, Kim H H, Ye Z, et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet[J]. Nature communications 2018, 9 (1), 1-7.
[140] Lyu B, Gao Y, Zhang Y, et al. Probing the Ferromagnetism and Spin Wave Gap in VI3 by Helicity-Resolved Raman Spectroscopy[J]. Nano Letters 2020, 20 (8), 6024-6031.
[141] Eckert M. Max von Laue and the discovery of X‐ray diffraction in 1912[J]. Annalen der Physik 2012, 524 (5), A83-A85.
[142] Bragg W H, Bragg W L. The reflection of X-rays by crystals[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88 (605), 428-438.
[143] Bragg W L. The structure of some crystals as indicated by their diffraction of X-rays[J]. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical physical character 1913, 89 (610), 248-277.
[144] 刘粤惠, 刘平安. X射线衍射分析原理与应用[M]. 北京: 化学工业出版社, 2003:1-3.
[145] 黄华, 郭灵虹. 晶态聚合物结构的X射线衍射分析及其进展[J]. 化学研究与应用 1998, 010 (002), 118-123.
[146] 董文辉, 李宁, 张奇奇. XRD法定量分析蒙脱石含量及影响因素研究[J]. 中国非金属矿工业导刊 2021, (6), 4.
[147] 潘峰, 王英华, 陈超. X射线衍射技术[M]. 北京: 化学工业出版社, 2016:1-9.
[148] Debye P, Scherrer P. Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1916, 1916, 1-15.
[149] 黄继武, 李周编. 多晶材料X射线衍射 实验原理、方法与应用[M]. 北京:冶金工业出版社, 2012:7-10.
[150] 苏少奎. 低温物性及测量--一个实验技术人员的理解和经验总结[M]. 北京:科学出版社, 2019:73-230.
[151] Liu Q, Wang L, Fu Y, et al. Magnetic order in XY-type antiferromagnetic monolayer CoPS3 revealed by Raman spectroscopy[J]. Physical Review B 2021, 103 (23), 235411.
[152] Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nature Nanotechnology 2018, 13 (4), 289-293.
[153] Li Z, Xia W, Su H, et al. Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism[J]. Scientific Reports 2020, 10 (1), 15345.
[154] Chu H, Roh C J, Island J O, et al. Linear Magnetoelectric Phase in Ultrathin MnPS3 Probed by Optical Second Harmonic Generation[J]. Physical Review Letters 2020, 124 (2), 027601.
[155] Carteaux V, Moussa F, Spiesser M. 2D Ising-Like Ferromagnetic Behaviour for the Lamellar Cr2Si2Te6 Compound: A Neutron Scattering Investigation[J]. Europhysics Letters (EPL) 1995, 29 (3), 251-256.
[156] Neave J H, Dobson P J, Joyce B A, et al. Reflection high-energy electron diffraction oscillations from vicinal surfaces—a new approach to surface diffusion measurements[J]. Applied Physics Letters 1985, 47 (2), 100-102.
[157] Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper[J]. Journal of Materials Chemistry 2011, 21 (10), 3324-3334.
[158] Hasegawa S. Crystal Growth by Flux Method[J]. Journal of the Mineralogical Society of Japan 1968, 8 (6), 397-406.
[159] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Advanced materials 2001, 13 (2), 113-116.
[160] Li X, Yang J. CrXTe3 (X=Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors[J]. Journal of Materials Chemistry C 2014, 2 (34), 7071-7076.
[161] Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A 2015, 3 (22), 11700-11715.
[162] Lin M W, Zhuang H L, Yan J, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material[J]. Journal of Materials Chemistry C 2016, 4 (2), 315-322.
[163] Cenker J, Huang B, Suri N, et al. Direct observation of two-dimensional magnons in atomically thin CrI3[J]. Nature Physics 2021, 17 (1), 20-25.
[164] Tian Y, Gray M J, Ji H, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal[J]. 2D Materials 2016, 3 (2), 025035.
[165] Lee J U, Lee S, Ryoo J H, et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3[J]. Nano Letters 2016, 16 (12), 7433-7438.
[166] Huang B, Cenker J, Zhang X, et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3[J]. Nature Nanotechnology 2020, 15 (3), 212-216.
[167] Liu Y, Wang W, Lu H, et al. The environmental stability characterization of exfoliated few-layer CrXTe3 (X = Si, Ge) nanosheets[J]. Applied Surface Science 2020, 511, 145452.
[168] Šimšová J, Lodder J C, Kaczér J, et al. Domain observation of a CoCr film by the colloid-SEM method[J]. Journal of Magnetism and Magnetic Materials 1988, 73 (2), 131-135.
[169] Schmidt F, Hubert A. Domain observations on CoCr-layers with a digitally enhanced Kerr-microscope[J]. Journal of Magnetism and Magnetic Materials 1986, 61 (3), 307-320.
[170] Lintelo H T, Streekstra W, Lodder C, et al. The influence of demagnetization on the magnetic after-effect of Co-Cr micro structures[J]. IEEE Transactions on Magnetics 1993, 29 (6), 3748-3750.
[171] Bochi G, Hug H J, Paul D I, et al. Magnetic Domain Structure in Ultrathin Films[J]. Physical Review Letters 1995, 75 (9), 1839-1842.
[172] Kaczér J, Gemperle B. The thickness dependence of the domain structure of magnetoplumbite[J]. Cechoslovackij fiziceskij zurnal B 1960, 10 (7), 505-510.
[173] Kronmüller H, Durst K D, Sagawa M. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets[J]. Journal of Magnetism and Magnetic Materials 1988, 74 (3), 291-302.
[174] Sung Lee J, Myung Cha J, Young Yoon H, et al. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity[J]. Scientific Reports 2015, 5 (1), 12135.
[175] Mohapatra J, Liu J P. Chapter 1 - Rare-Earth-Free Permanent Magnets: The Past and Future[M]. In Handbook of Magnetic Materials, E Brück, Ed. Elsevier, 2018: 1-57.
[176] Back C H, Würsch C, Vaterlaus A, et al. Experimental confirmation of universality for a phase transition in two dimensions[J]. Nature 1995, 378 (6557), 597-600.
[177] Zhang C, Gu Y, Wang L, et al. Pressure-Enhanced Ferromagnetism in Layered CrSiTe3 Flakes[J]. Nano Letters 2021, 21 (19), 7946-7952.
[178] Tannous C, Gieraltowski J. The Stoner–Wohlfarth model of ferromagnetism[J]. European Journal of Physics 2009, 29, 475-487.
[179] Fisher M E, Barber M N. Scaling Theory for Finite-Size Effects in the Critical Region[J]. Physical Review Letters 1972, 28 (23), 1516-1519.
[180] Zhang R J, Willis R F. Thickness-dependent Curie temperatures of ultrathin magnetic films: Effect of the range of spin-spin interactions[J]. PHYSICAL REVIEW LETTERS 2001, 86 (12), 2665-2668.
[181] Stanley H E, Introduction to Phase Transition and Critical Phenomena[M]. New York, Oxford University Press, 1971: 126-128.
[182] Li Y, Baberschke K. Dimensional crossover in ultrathin Ni(111) films on W(110)[J]. Physical Review Letters 1992, 68 (8), 1208-1211.
[183] Siegmann H C, Sther J. Magnetism: From Fundamentals to Nanoscale Dynamics[M]. Berlin, New York, Springer, 2006:93-97.
[184] Subhan F, Khan I, Hong J. Pressure-induced ferromagnetism and enhanced perpendicular magnetic anisotropy of bilayer CrI3[J]. Journal of Physics: Condensed Matter 2019, 31 (35), 355001.
[185] Gu Y, Zhang S, Zou X. Tunable magnetism in layered CoPS3 by pressure and carrier doping[J]. Science China Materials 2021, 64 (3), 673-682.
[186] Yankowitz M, Jung J, Laksono E, et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure[J]. Nature 2018, 557 (7705), 404-408.
[187] Fu L, Wan Y, Tang N, et al. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure[J]. Science Advances 3 (11), 1700162.
[188] Xia J, Yan J, Wang Z, et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers[J]. Nature Physics 2021, 17 (1), 92-98.
[189] Zhang L, Tang Y, Khan A R, et al. 2D Materials and Heterostructures at Extreme Pressure[J]. Advanced Science 2020, 7 (24), 2002697.
[190] Su H, Liu X, Wei C, et al. Pressure-Controlled Structural Symmetry Transition in Layered InSe[J]. Laser & Photonics Reviews 2019, 13 (6), 1900012.
[191] 戴道生,钱昆明. 铁磁学[M]. 北京:科学出版社,2017:189
[192] Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K[J]. 1978, 83 (B3), 1257-1268.
[193] Kang S, Kang S, Yu J. Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials[J]. Journal of Electronic Materials 2019, 48 (3), 1441-1445.
[194] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B 1996, 54 (16), 11169-11186.
[195] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science 1996, 6 (1), 15-50.
[196] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters 1996, 77 (18), 3865-3868.
[197] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B 1999, 59 (3), 1758-1775.
[198] Klimeš J, Bowler D R, Michaelides A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics: Condensed Matter 2009, 22 (2), 022201.
[199] Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I[J]. Phys. Rev. B 1991, 44 (3), 943-954.
[200] Liu L, Ren X, Xie J, et al. Magnetic switches via electric field in BN nanoribbons[J]. Applied Surface Science 2019, 480, 300-307.
[201] Torelli D, Olsen T. Calculating critical temperatures for ferromagnetic order in two-dimensional materials[J]. 2D Materials 2018, 6 (1), 015028.
[202] Khomskii D. Transition metal compounds[M]. Cambridge University Press, 2014: 134-140.
[203] Chen X, Qi J, Shi D. Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction[J]. Physics Letters A 2015, 379 (1), 60-63.

所在学位评定分委会
物理系
国内图书分类号
O433.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/405840
专题理学院_物理系
推荐引用方式
GB/T 7714
张诚. 二维铁磁材料 CrSiTe3的磁性表征及调控研究[D]. 哈尔滨. 哈尔滨工业大学,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11849467-张诚-物理系.pdf(8632KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张诚]的文章
百度学术
百度学术中相似的文章
[张诚]的文章
必应学术
必应学术中相似的文章
[张诚]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。