[1] Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys. Rev. B 1989, 39 (7), 4828-4830.
[2] Moodera J S, Kinder L R, Wong T M, et al. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions[J]. Physical Review Letters 1995, 74 (16), 3273-3276.
[3] Berger L. Emission of spin waves by a magnetic multilayer traversed by a current[J]. Phys. Rev. B 1996, 54 (13), 9353-9358.
[4] Zhang S, Xu R, Luo N, et al. Two-dimensional magnetic materials: structures, properties and external controls[J]. Nanoscale 2021, 13 (3), 1398-1424.
[5] Liu Z, Deng L, Peng B. Ferromagnetic and ferroelectric two-dimensional materials for memory application[J]. Nano Research 2021, 14 (6), 1802-1813.
[6] Huang B, Clark G, Navarro M E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature 2017, 546 (7657), 270-273.
[7] Gong C, Li L, Li Z, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature 2017, 546 (7657), 265-269.
[8] Fei Z, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2[J]. Nature materials 2018, 17 (9), 778.
[9] Li Q, Yang M, Gong C, et al. Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature[J]. Nano Letters 2018, 18 (9), 5974-5980.
[10] Hu X, Zhao Y, Shen X, et al. Enhanced Ferromagnetism and Tunable Magnetism in Fe3GeTe2 Monolayer by Strain Engineering[J]. ACS Applied Materials & Interfaces 2020, 12 (23), 26367-26373.
[11] Deng Y, Yu Y, Song Y, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2[J]. Nature 2018, 563 (7729), 94-99.
[12] Verzhbitskiy I A, Kurebayashi H, Cheng H, et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating[J]. Nature Electronics 2020, 3 (8), 460-465.
[13] Wang K, Hu T, Jia F, et al. Magnetic and electronic properties of Cr2Ge2Te6 monolayer by strain and electric-field engineering[J]. Applied Physics Letters 2019, 114 (9), 092405.
[14] Lohmann M, Su T, Niu B, et al. Probing Magnetism in Insulating Cr2Ge2Te6 by Induced Anomalous Hall Effect in Pt[J]. Nano Letters 2019, 19 (4), 2397-2403.
[15] Sun Z, Yi Y, Song T, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3[J]. Nature 2019, 572 (7770), 497-501.
[16] Li T, Jiang S, Sivadas N, et al. Pressure-controlled interlayer magnetism in atomically thin CrI3[J]. Nature Materials 2019, 18 (12), 1303-1308.
[17] Mondal S, Kannan M, Das M, et al. Effect of hydrostatic pressure on ferromagnetism in two-dimensional CrI3[J]. Phys. Rev. B 2019, 99 (18), 180407.
[18] Coak M J, Jarvis D M, Hamidov H, et al. Tuning dimensionality in van-der-Waals antiferromagnetic Mott insulatorsTMPS3[J]. Journal of Physics: Condensed Matter 2019, 32 (12), 124003.
[19] Kim K, Lim S Y, Lee J U, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3[J]. Nature Communications 2019, 10 (1), 345.
[20] Kang S, Kim K, Kim B H, et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3[J]. Nature 2020, 583 (7818), 785-789.
[21] Vaclavkova D, Delhomme A, Faugeras C, et al. Magnetoelastic interaction in the two-dimensional magnetic material MnPS3 studied by first principles calculations and Raman experiments[J]. 2D Materials 2020, 7 (3), 035030.
[22] Bedoya P A, Ji J R, Pandeya A K, et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer[J]. Science 2021, 374 (6567), 616-620.
[23] Kim H H, Yang B, Li S, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides[J]. PNAS 2019, 116 (23), 11131-11136.
[24] Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3[J]. Nature Nanotechnology 2018, 13 (7), 544-548.
[25] Wang X, Li Z, Zhang M, et al. Pressure-induced modification of the anomalous Hall effect in layered Fe3GeTe2[J]. Phys. Rev. B 2019, 100 (1), 014407.
[26] Zhang S, Zou X, Cheng H. Mechanical-electro-magnetic coupling in strained bilayer CrI3[J]. Science China Technological Sciences 2020, 63 (7), 1265-1271.
[27] Zhang L, Huang X, Dai H, et al. Proximity-Coupling-Induced Significant Enhancement of Coercive Field and Curie Temperature in 2D van der Waals Heterostructures[J]. Advanced Materials 2020, 32 (38), 2002032.
[28] Wang H, Liu Y, Wu P, et al. Above Room-Temperature Ferromagnetism in Wafer-Scale Two-Dimensional van der Waals Fe3GeTe2 Tailored by a Topological Insulator[J]. ACS Nano 2020, 14 (8), 10045-10053.
[29] Ji H, Stokes R A, Alegria L D, et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators[J]. Journal of Applied Physics 2013, 114 (11), 114907.
[30] Liu B, Zou Y, Zhang L, et al. Critical behavior of the quasi-two-dimensional semiconducting ferromagnet CrSiTe3[J]. Scientific Reports 2016, 6 (1), 33873.
[31] Klimovskikh I I, Otrokov M M, Estyunin D, et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3) mtopological insulators family[J]. npj Quantum Materials 2020, 5 (1), 54.
[32] Ron A, Zoghlin E, Balents L, et al. Dimensional crossover in a layered ferromagnet detected by spin correlation driven distortions[J]. Nature Communications 2019, 10 (1), 1654.
[33] Tan C, Lee J, Jung S G, et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2[J]. Nature Communications 2018, 9 (1), 1554.
[34] Weiss P. The molecular field hypothesis and ferromagnetism[J]. J. Phys. Radium 1907, 6, 661.
[35] Gong C, Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science 2019, 363 (6428), eaav4450.
[36] Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology 2019, 14 (5), 408-419.
[37] Mermin N D, Wagner H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models[J]. Physical Review Letters 1966, 17 (22), 1133-1136.
[38] Sangwan V K, Hersam M C. Electronic Transport in Two-Dimensional Materials[J]. Annual Review of Physical Chemistry 2018, 69 (1), 299-325.
[39] Zhang X, Hou L, Ciesielski A, et al. 2D Materials Beyond Graphene for High-Performance Energy Storage Applications[J]. Advanced Energy Materials 2016, 6 (23), 1600671.
[40] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science 2004, 306 (5696), 666-669.
[41] Zhen Z, Zhu H. Structure and Properties of Graphene[M]. In Graphene, Academic Press, 2018, 1-12.
[42] Su T, Qin Z, Ji H, et al. An overview of photocatalysis facilitated by 2D heterojunctions[J]. Nanotechnology 2019, 30 (50), 502002.
[43] He H, Guo Z, Wen Y, et al. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds[J]. Analytica Chimica Acta 2019, 1090, 1-22.
[44] Jiang C, Xu W, Rasmita A, et al. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures[J]. Nature Communications 2018, 9 (1), 753.
[45] Mak K F, He K, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology 2012, 7 (8), 494-498.
[46] Zeng H, Dai J, Yao W, et al. Valley polarization in MoS2 monolayers by optical pumping[J]. Nature Nanotechnology 2012, 7, 490.
[47] Li M Y, Chen C H, Shi Y, et al. Heterostructures based on two-dimensional layered materials and their potential applications[J]. Materials Today 2016, 19 (6), 322-335.
[48] Cheng R, Li D, Zhou H, et al. Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes[J]. Nano Letters 2014, 14 (10), 5590-5597.
[49] Li M Y, Pu J, Huang J K, et al. Self-Aligned and Scalable Growth of Monolayer WSe2–MoS2 Lateral Heterojunctions[J]. 2018, 28 (17), 1706860.
[50] Zhao Y, Xu K, Pan F, et al. Doping, Contact and Interface Engineering of Two-Dimensional Layered Transition Metal Dichalcogenides Transistors[J]. Advanced Functional Materials 2017, 27 (19), 1603484.
[51] Zhang K, Feng S, Wang J, et al. Manganese doping of monolayer MoS2: the substrate is critical[J]. Nano letters 2015, 15 (10), 6586-6591.
[52] Wang Z, Chiu Y H, Hong K, et al. Electrical tuning of interlayer exciton gases in WSe2 bilayers[J]. Nano letters 2017, 18 (1), 137-143.
[53] Ji J, Zhang A, Xia T, et al. Strain-modulated excitonic gaps in mono-and bi-layer MoSe2[J]. 2016, 25 (7), 077802.
[54] Zhang Q, Chang Z, Xu G, et al. Strain relaxation of monolayer WS2 on plastic substrate[J]. 2016, 26 (47), 8707-8714.
[55] Ahn G H, Amani M, Rasool H, et al. Strain-engineered growth of two-dimensional materials[J]. Nature communications 2017, 8 (1), 608.
[56] Gonzalezherrero H, Gomezrodriguez J M, Mallet P, et al. Atomic-scale control of graphene magnetism by using hydrogen atoms[J]. Science 2016, 352 (6284), 437-441.
[57] Nair R, Sepioni M, Tsai I, et al. Spin-half paramagnetism in graphene induced by point defects[J]. Nature Physics 2012, 8 (3), 199-202.
[58] Mccreary K M, Swartz A, Han W, et al. Magnetic moment formation in graphene detected by scattering of pure spin currents[J]. Physical Review Letters 2012, 109 (18), 186604.
[59] 蒋小红, 秦泗晨, 幸子越等. 二维磁性材料的物性研究及性能调控[J]. 物理学报 2021, 70 (12), 127801.
[60] Chen W, Sun Z, Wang Z, et al. Direct observation of van der Waals stacking-dependent interlayer magnetism[J]. Science 2019, 366 (6468), 983-987.
[61] Seyler K L, Zhong D, Klein D R, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator[J]. Nature Physics 2018, 14 (3), 277-281.
[62] McGuire M A, Dixit H, Cooper V R, et al. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3[J]. Chemistry of Materials 2015, 27 (2), 612-620.
[63] Morosin B, Narath A. X‐Ray Diffraction and Nuclear Quadrupole Resonance Studies of Chromium Trichloride[J]. The Journal of Chemical Physics 1964, 40 (7), 1958-1967.
[64] Klein D R, MacNeill D, Song Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nature Physics 2019, 15 (12), 1255-1260.
[65] McGuire M A. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides[J]. Crystal 2017, 7 (5), 121.
[66] McGuire M A, Clark G, Kc S, et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals[J]. Physical Review Materials 2017, 1 (1), 014001.
[67] Tsubokawa I. On the Magnetic Properties of a CrBr3 Single Crystal[J]. Journal of the Physical Society of Japan 1960, 15 (9), 1664-1668.
[68] Zhao D, Zhang L, Malik I A, et al. Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films[J]. Nano Research 2018, 11 (6), 3116-3121.
[69] Zhang X, Lu Q, Liu W, et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films[J]. Nature Communications 2021, 12 (1), 2492.
[70] McGuire M A, Garlea V O, Kc S, et al. Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3[J]. Phys. Rev. B 2017, 95 (14), 144421.
[71] Wang M, Kang L, Su J, et al. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers[J]. Nanoscale 2020, 12 (31), 16427-16432.
[72] Meng L, Zhou Z, Xu M, et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition[J]. Nature Communications 2021, 12 (1), 809.
[73] Wen Y, Liu Z, Zhang Y, et al. Tunable Room-Temperature Ferromagnetism in Two-Dimensional Cr2Te3[J]. Nano Letters 2020, 20 (5), 3130-3139.
[74] Liu W, Dai Y, Yang Y E, et al. Critical behavior of the single-crystalline van der Waals bonded ferromagnet Cr2Ge2Te6[J]. Phys. Rev. B 2018, 98 (21), 214420.
[75] Lin Z, Lohmann M, Ali Z A, et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6[J]. Physical Review Materials 2018, 2 (5), 051004.
[76] Williams T J, Aczel A A, Lumsden M D, et al. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3[J]. Physical Review B 2015, 92 (14), 144404.
[77] Casto L D, Clune A J, Yokosuk M O, et al. Strong spin-lattice coupling in CrSiTe3[J]. APL Materials 2015, 3 (4), 041515.
[78] Xie Q, Liu Y, Wu M, et al. Two stage magnetization in van der Waals layered CrXTe3 (X = Si, Ge) single crystals[J]. Materials Letters 2019, 246, 60-62.
[79] Li Y F, Wang W, Guo W, et al. Electronic structure of ferromagnetic semiconductor CrGeTe3 by angle-resolved photoemission spectroscopy[J]. Phys. Rev. B 2018, 98 (12), 125127.
[80] Dilip B, Jun G, Naoka H, et al. Nearly room temperature ferromagnetism in pressure-induced correlated metallic state of van der Waals insulator CrGeTe3[J]. Physical Review Letters 2021.
[81] Siberchicot B, Jobic S, Carteaux V, et al. Band Structure Calculations of Ferromagnetic Chromium Tellurides CrSiTe3 and CrGeTe3[J]. The Journal of Physical Chemistry 1996, 100 (14), 5863-5867.
[82] Fang Y, Wu S, Zhu Z Z, et al. Large magneto-optical effects and magnetic anisotropy energy in two-dimensional Cr2Ge2Te6[J]. Phys. Rev. B 2018, 98 (12), 125416.
[83] Wu S, Wang L, Gao B, et al. The direct observation of ferromagnetic domain of single crystal CrSiTe3[J]. AIP Advances 2018, 8 (5), 055016.
[84] Yang S, Zhang T, Jiang C. van der Waals Magnets: Material Family, Detection and Modulation of Magnetism, and Perspective in Spintronics[J]. Advance Science 2021, 8 (2), 2002488.
[85] Zhang J, Cai X, Xia W, et al. Unveiling Electronic Correlation and the Ferromagnetic Superexchange Mechanism in the van der Waals Crystal CrSiTe3 [J]. Physical Review Letters 2019, 123 (4), 047203.
[86] Milosavljević A, Šolajić A, Pešić J, et al. Evidence of spin-phonon coupling in CrSiTe3[J]. Phys. Rev. B 2018, 98 (10), 104306.
[87] Cai W, Sun H, Xia W, et al. Pressure-induced superconductivity and structural transition in ferromagnetic CrSiTe3[J]. Phys. Rev. B 2020, 102 (14), 144525.
[88] Huang B, McGuire M A, May A F, et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures[J]. Nature Materials 2020, 19 (12), 1276-1289.
[89] Moog E R, Bader S D. Smoke signals from ferromagnetic monolayers: p(1×1) Fe/Au(100)[J]. Superlattices and Microstructures 1985, 1 (6), 543-552.
[90] Liu S, Yuan X, Zou Y, et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy[J]. 2D Materials and Applications 2017, 1 (1), 30.
[91] Wang Z, Sapkota D, Taniguchi T, et al. Tunneling Spin Valves Based on Fe3GeTe2/hBN/ Fe3GeTe2 van der Waals Heterostructures[J]. Nano Letters 2018, 18 (7), 4303-4308.
[92] Mogi M, Nakajima T, Ukleev V, et al. Large Anomalous Hall Effect in Topological Insulators with Proximitized Ferromagnetic Insulators[J]. Physical Review Letters 2019, 123 (1), 016804.
[93] Yao X, Gao B, Han M G, et al. Record High-Proximity-Induced Anomalous Hall Effect in (BixSb1–x)2Te3 Thin Film Grown on CrGeTe3 Substrate[J]. Nano Letters 2019, 19 (7), 4567-4573.
[94] Nagaosa N, Sinova J, Onoda S, et al. Anomalous Hall effect[J]. Reviews of Modern Physics 2010, 82 (2), 1539-1592.
[95] May A F, Ovchinnikov D, Zheng Q, et al. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2[J]. ACS Nano 2019, 13 (4), 4436-4442.
[96] Fox M. Optical properties of solids[M]. AAPT: 2001, 230-235.
[97] Burch K S, Mandrus D, Park J G. Magnetism in two-dimensional van der Waals materials[J]. Nature 2018, 563 (7729), 47-52.
[98] Mason W R. A Practical Guide to Magnetic Circular Dichroism Spectroscopy[M]. Wiley Interscience, 2007:1-48.
[99] Mak K F, Shan J, Ralph D C. Probing and controlling magnetic states in 2D layered magnetic materials[J]. Nature Reviews Physics 2019, 1 (11), 646-661.
[100] Instruments HPEM-100 Photoelectic Modulator User Manual. https://www.hindsinstruments.com/wp-content/uploads/PEM-100-User-Manual.pdf.
[101] 宋思宇, 于向前, 陈鸿飞等. 基于锁相放大原理的磁电传感信号放大器[J]. 仪表技术与传感器 2021, 38(12), 44-50.
[102] Han B, Gao X, Lv J, et al. Magnetic Circular Dichroism in Nanomaterials: New Opportunity in Understanding and Modulation of Excitonic and Plasmonic Resonances[J]. Advanced Materials 2018, 1801491.
[103] Saito Y, Nojima T, Iwasa Y. Highly crystalline 2D superconductors[J]. Nature Reviews Materials 2017, 2 (1), 1-18.
[104] Matsukura F, Tokura Y, Ohno H. Control of magnetism by electric fields[J]. Nature Nanotechnology 2015, 10 (3), 209-220.
[105] Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor[J]. Nature Nanotechnology 2018, 13 (7), 554-559.
[106] Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets[J]. Nature Materials 2018, 17 (5), 406-410.
[107] 周鹭付磊二维过渡金属二硫属化合物的应力调控[J]. 科学通报 2019, 64 (17), 1817-1831.
[108] Tsutsui G, Mochizuki S, Loubet N, et al. Strain engineering in functional materials[J]. Aip Advances 2019, 9 (3), 12.
[109] Yun W S, Han S W, Hong S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X = S, Se, Te)[J]. Phys. Rev. B 2012, 85 (3), 033305.
[110] Bertolazzi S, Brivio J, Kis A. Stretching and Breaking of Ultrathin MoS2[J]. ACS Nano 2011, 5 (12), 9703-9709.
[111] Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials 2017, 2, 17033.
[112] Niehues I, Schmidt R, Drüppel M, et al. Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors[J]. Nano Letters 2018, 18 (3), 1751-1757.
[113] Desai S B, Seol G, Kang J S, et al. Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe2[J]. Nano Letters 2014, 14 (8), 4592-4597.
[114] Hui Y Y, Liu X, Jie W, et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet[J]. ACS nano 2013, 7 (8), 7126-7131.
[115] Castellanos G A, Roldán R, Cappelluti E, et al. Local strain engineering in atomically thin MoS2[J]. Nano letters 2013, 13 (11), 5361-5366.
[116] Song T, Fei Z, Yankowitz M, et al. Switching 2D magnetic states via pressure tuning of layer stacking[J]. Nature Materials 2019, 18 (12), 1298-1302.
[117] Jiang P, Wang C, Chen D, et al. Stacking tunable interlayer magnetism in bilayer CrI3[J]. Phys. Rev. B 2019, 99 (14), 144401.
[118] Sivadas N, Okamoto S, Xu X, et al. Stacking-Dependent Magnetism in Bilayer CrI3[J]. Nano Letters 2018, 18 (12), 7658-7664.
[119] Wang H, Xu R, Liu C, et al. Pressure-Dependent Intermediate Magnetic Phase in Thin Fe3GeTe2 Flakes[J]. The Journal of Physical Chemistry Letters 2020, 11 (17), 7313-7319.
[120] Wang Y, Wang C, Liang S J, et al. Strain-Sensitive Magnetization Reversal of a van der Waals Magnet[J]. Advanced Materials 2020, 32 (42), 2004533.
[121] Jiang S, Xie H, Shan J, et al. Exchange magnetostriction in two-dimensional antiferromagnets[J]. Nature Materials 2020, 19 (12), 1295-1299.
[122] Webster L, Yan J. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3[J]. Phys. Rev. B 2018, 98 (14).
[123] Li Z, Zhou B, Luan C. Strain-tunable magnetic anisotropy in two-dimensional Dirac half-metals: nickel trihalides[J]. RSC Advances 2019, 9 (61), 35614-35623.
[124] Dong X J, You J Y, Gu B, et al. Strain-Induced Room-Temperature Ferromagnetic Semiconductors with Large Anomalous Hall Conductivity in Two-Dimensional Cr2Ge2Se6[J]. Physical Review Applied 2019, 12 (1), 014020.
[125] Jayaraman A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics 1983, 55 (1), 65-108.
[126] Hirao N, Kawaguchi S I, Hirose K, et al. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8[J]. Matter and Radiation at Extremes 2020, 5 (1), 018403.
[127] Holtgrewe N, Greenberg E, Prescher C, et al. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS[J]. High Pressure Research 2019, 39 (3), 457-470.
[128] Matsumoto R, Hara H, Tanaka H, et al. Pressure-Induced Superconductivity in Sulfur-Doped SnSe Single Crystal Using Boron-Doped Diamond Electrode-Prefabricated Diamond Anvil Cell[J]. Journal of the Physical Society of Japan 2018, 87 (12), 124706.
[129] Xie J, Liu X, Zhang W, et al. Fragile Pressure-Induced Magnetism in FeSe Superconductors with a Thickness Reduction[J]. Nano Letters 2021, 21 (21), 9310-9317.
[130] Coak M J, Jarvis D M, Hamidov H, et al. Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3[J]. Physical Review X 2021, 11 (1), 011024.
[131] Mao H K, Xu J, Bell P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions[J]. Journal of Geophysical Research: Solid Earth 1986, 91 (B5), 4673-4676.
[132] Mao H K, Bell P M, Shaner J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. Journal of Applied Physics 1978, 49 (6), 3276-3283.
[133] Ragan D D, Gustavsen R, Schiferl D. Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K[J]. Journal of Applied Physics 1992, 72 (12), 5539-5544.
[134] Yen J, Nicol M. Temperature dependence of the ruby luminescence method for measuring high pressures[J]. Journal of Applied Physics 1992, 72 (12), 5535-5538.
[135] Fluorescense pressure calculation and thermocouple tools. https://millenia.cars.aps.anl.gov/gsecars/ruby/ruby.htm.
[136] Gong L, Zhang C, Nie A, et al. Epitaxial growth of large-grain-size ferromagnetic monolayer CrI3 for valley Zeeman splitting enhancement[J]. Nanoscale 2021, 13 (5), 2955-2962.
[137] Raman C V, Krishnan K S. A New Type of Secondary Radiation[J]. Nature 1928, 121 (3048), 501-502.
[138] Wu J, Xie L. Structural quantification for graphene and related two-dimensional materials by Raman spectroscopy[J]. Analytical Chemistry 2018, 91 (1), 468-481.
[139] Jin W, Kim H H, Ye Z, et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet[J]. Nature communications 2018, 9 (1), 1-7.
[140] Lyu B, Gao Y, Zhang Y, et al. Probing the Ferromagnetism and Spin Wave Gap in VI3 by Helicity-Resolved Raman Spectroscopy[J]. Nano Letters 2020, 20 (8), 6024-6031.
[141] Eckert M. Max von Laue and the discovery of X‐ray diffraction in 1912[J]. Annalen der Physik 2012, 524 (5), A83-A85.
[142] Bragg W H, Bragg W L. The reflection of X-rays by crystals[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88 (605), 428-438.
[143] Bragg W L. The structure of some crystals as indicated by their diffraction of X-rays[J]. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical physical character 1913, 89 (610), 248-277.
[144] 刘粤惠, 刘平安. X射线衍射分析原理与应用[M]. 北京: 化学工业出版社, 2003:1-3.
[145] 黄华, 郭灵虹. 晶态聚合物结构的X射线衍射分析及其进展[J]. 化学研究与应用 1998, 010 (002), 118-123.
[146] 董文辉, 李宁, 张奇奇. XRD法定量分析蒙脱石含量及影响因素研究[J]. 中国非金属矿工业导刊 2021, (6), 4.
[147] 潘峰, 王英华, 陈超. X射线衍射技术[M]. 北京: 化学工业出版社, 2016:1-9.
[148] Debye P, Scherrer P. Interferenzen an regellos orientierten Teilchen im Röntgenlicht. I[J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1916, 1916, 1-15.
[149] 黄继武, 李周编. 多晶材料X射线衍射 实验原理、方法与应用[M]. 北京:冶金工业出版社, 2012:7-10.
[150] 苏少奎. 低温物性及测量--一个实验技术人员的理解和经验总结[M]. 北京:科学出版社, 2019:73-230.
[151] Liu Q, Wang L, Fu Y, et al. Magnetic order in XY-type antiferromagnetic monolayer CoPS3 revealed by Raman spectroscopy[J]. Physical Review B 2021, 103 (23), 235411.
[152] Bonilla M, Kolekar S, Ma Y, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates[J]. Nature Nanotechnology 2018, 13 (4), 289-293.
[153] Li Z, Xia W, Su H, et al. Magnetic critical behavior of the van der Waals Fe5GeTe2 crystal with near room temperature ferromagnetism[J]. Scientific Reports 2020, 10 (1), 15345.
[154] Chu H, Roh C J, Island J O, et al. Linear Magnetoelectric Phase in Ultrathin MnPS3 Probed by Optical Second Harmonic Generation[J]. Physical Review Letters 2020, 124 (2), 027601.
[155] Carteaux V, Moussa F, Spiesser M. 2D Ising-Like Ferromagnetic Behaviour for the Lamellar Cr2Si2Te6 Compound: A Neutron Scattering Investigation[J]. Europhysics Letters (EPL) 1995, 29 (3), 251-256.
[156] Neave J H, Dobson P J, Joyce B A, et al. Reflection high-energy electron diffraction oscillations from vicinal surfaces—a new approach to surface diffusion measurements[J]. Applied Physics Letters 1985, 47 (2), 100-102.
[157] Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper[J]. Journal of Materials Chemistry 2011, 21 (10), 3324-3334.
[158] Hasegawa S. Crystal Growth by Flux Method[J]. Journal of the Mineralogical Society of Japan 1968, 8 (6), 397-406.
[159] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport[J]. Advanced materials 2001, 13 (2), 113-116.
[160] Li X, Yang J. CrXTe3 (X=Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors[J]. Journal of Materials Chemistry C 2014, 2 (34), 7071-7076.
[161] Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A 2015, 3 (22), 11700-11715.
[162] Lin M W, Zhuang H L, Yan J, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material[J]. Journal of Materials Chemistry C 2016, 4 (2), 315-322.
[163] Cenker J, Huang B, Suri N, et al. Direct observation of two-dimensional magnons in atomically thin CrI3[J]. Nature Physics 2021, 17 (1), 20-25.
[164] Tian Y, Gray M J, Ji H, et al. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal[J]. 2D Materials 2016, 3 (2), 025035.
[165] Lee J U, Lee S, Ryoo J H, et al. Ising-Type Magnetic Ordering in Atomically Thin FePS3[J]. Nano Letters 2016, 16 (12), 7433-7438.
[166] Huang B, Cenker J, Zhang X, et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3[J]. Nature Nanotechnology 2020, 15 (3), 212-216.
[167] Liu Y, Wang W, Lu H, et al. The environmental stability characterization of exfoliated few-layer CrXTe3 (X = Si, Ge) nanosheets[J]. Applied Surface Science 2020, 511, 145452.
[168] Šimšová J, Lodder J C, Kaczér J, et al. Domain observation of a CoCr film by the colloid-SEM method[J]. Journal of Magnetism and Magnetic Materials 1988, 73 (2), 131-135.
[169] Schmidt F, Hubert A. Domain observations on CoCr-layers with a digitally enhanced Kerr-microscope[J]. Journal of Magnetism and Magnetic Materials 1986, 61 (3), 307-320.
[170] Lintelo H T, Streekstra W, Lodder C, et al. The influence of demagnetization on the magnetic after-effect of Co-Cr micro structures[J]. IEEE Transactions on Magnetics 1993, 29 (6), 3748-3750.
[171] Bochi G, Hug H J, Paul D I, et al. Magnetic Domain Structure in Ultrathin Films[J]. Physical Review Letters 1995, 75 (9), 1839-1842.
[172] Kaczér J, Gemperle B. The thickness dependence of the domain structure of magnetoplumbite[J]. Cechoslovackij fiziceskij zurnal B 1960, 10 (7), 505-510.
[173] Kronmüller H, Durst K D, Sagawa M. Analysis of the magnetic hardening mechanism in RE-FeB permanent magnets[J]. Journal of Magnetism and Magnetic Materials 1988, 74 (3), 291-302.
[174] Sung Lee J, Myung Cha J, Young Yoon H, et al. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity[J]. Scientific Reports 2015, 5 (1), 12135.
[175] Mohapatra J, Liu J P. Chapter 1 - Rare-Earth-Free Permanent Magnets: The Past and Future[M]. In Handbook of Magnetic Materials, E Brück, Ed. Elsevier, 2018: 1-57.
[176] Back C H, Würsch C, Vaterlaus A, et al. Experimental confirmation of universality for a phase transition in two dimensions[J]. Nature 1995, 378 (6557), 597-600.
[177] Zhang C, Gu Y, Wang L, et al. Pressure-Enhanced Ferromagnetism in Layered CrSiTe3 Flakes[J]. Nano Letters 2021, 21 (19), 7946-7952.
[178] Tannous C, Gieraltowski J. The Stoner–Wohlfarth model of ferromagnetism[J]. European Journal of Physics 2009, 29, 475-487.
[179] Fisher M E, Barber M N. Scaling Theory for Finite-Size Effects in the Critical Region[J]. Physical Review Letters 1972, 28 (23), 1516-1519.
[180] Zhang R J, Willis R F. Thickness-dependent Curie temperatures of ultrathin magnetic films: Effect of the range of spin-spin interactions[J]. PHYSICAL REVIEW LETTERS 2001, 86 (12), 2665-2668.
[181] Stanley H E, Introduction to Phase Transition and Critical Phenomena[M]. New York, Oxford University Press, 1971: 126-128.
[182] Li Y, Baberschke K. Dimensional crossover in ultrathin Ni(111) films on W(110)[J]. Physical Review Letters 1992, 68 (8), 1208-1211.
[183] Siegmann H C, Sther J. Magnetism: From Fundamentals to Nanoscale Dynamics[M]. Berlin, New York, Springer, 2006:93-97.
[184] Subhan F, Khan I, Hong J. Pressure-induced ferromagnetism and enhanced perpendicular magnetic anisotropy of bilayer CrI3[J]. Journal of Physics: Condensed Matter 2019, 31 (35), 355001.
[185] Gu Y, Zhang S, Zou X. Tunable magnetism in layered CoPS3 by pressure and carrier doping[J]. Science China Materials 2021, 64 (3), 673-682.
[186] Yankowitz M, Jung J, Laksono E, et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure[J]. Nature 2018, 557 (7705), 404-408.
[187] Fu L, Wan Y, Tang N, et al. K-Λ crossover transition in the conduction band of monolayer MoS2 under hydrostatic pressure[J]. Science Advances 3 (11), 1700162.
[188] Xia J, Yan J, Wang Z, et al. Strong coupling and pressure engineering in WSe2–MoSe2 heterobilayers[J]. Nature Physics 2021, 17 (1), 92-98.
[189] Zhang L, Tang Y, Khan A R, et al. 2D Materials and Heterostructures at Extreme Pressure[J]. Advanced Science 2020, 7 (24), 2002697.
[190] Su H, Liu X, Wei C, et al. Pressure-Controlled Structural Symmetry Transition in Layered InSe[J]. Laser & Photonics Reviews 2019, 13 (6), 1900012.
[191] 戴道生,钱昆明. 铁磁学[M]. 北京:科学出版社,2017:189
[192] Birch F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K[J]. 1978, 83 (B3), 1257-1268.
[193] Kang S, Kang S, Yu J. Effect of Coulomb Interactions on the Electronic and Magnetic Properties of Two-Dimensional CrSiTe3 and CrGeTe3 Materials[J]. Journal of Electronic Materials 2019, 48 (3), 1441-1445.
[194] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B 1996, 54 (16), 11169-11186.
[195] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science 1996, 6 (1), 15-50.
[196] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters 1996, 77 (18), 3865-3868.
[197] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B 1999, 59 (3), 1758-1775.
[198] Klimeš J, Bowler D R, Michaelides A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics: Condensed Matter 2009, 22 (2), 022201.
[199] Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott insulators: Hubbard U instead of Stoner I[J]. Phys. Rev. B 1991, 44 (3), 943-954.
[200] Liu L, Ren X, Xie J, et al. Magnetic switches via electric field in BN nanoribbons[J]. Applied Surface Science 2019, 480, 300-307.
[201] Torelli D, Olsen T. Calculating critical temperatures for ferromagnetic order in two-dimensional materials[J]. 2D Materials 2018, 6 (1), 015028.
[202] Khomskii D. Transition metal compounds[M]. Cambridge University Press, 2014: 134-140.
[203] Chen X, Qi J, Shi D. Strain-engineering of magnetic coupling in two-dimensional magnetic semiconductor CrSiTe3: Competition of direct exchange interaction and superexchange interaction[J]. Physics Letters A 2015, 379 (1), 60-63.
修改评论