中文版 | English
题名

HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation

作者
通讯作者Fan, Zipei; Song, Xuan
发表日期
2022-10-01
DOI
发表期刊
ISSN
1386-145X
EISSN
1573-1413
卷号26期号:4页码:1625-1648
摘要
Friend recommendation from user trajectory is a vital real-world application of location-based social networks (LBSN) services. Previous statistical analysis indicated that social network relationships could explain 10% to 30% of human movement, especially long-distance travel. Therefore, it is necessary to recognize patterns from human mobility to assist the friend recommendation. However, previous works either modelled friendships and check-in records by simple graphs with only one connection between any two nodes or ignored a large amount of vital spatio-temporal information and semantic information in raw LBSN data. To overcome the limitation of the simple graph commonly seen in previous works, we leverage heterogeneous multigraph to model LBSN data and define various semantic connections between nodes. Against this background, we propose a Heterogeneous Multigraph Contrastive Learning (HMGCL) model to capture spatio-temporal characteristics of human trajectories for user node embedding learning. Extensive experiments show that our method outperforms the state-of-the-art approaches in six real-world city datasets.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Japan's Ministry of Education, Culture, Sports, Science, and Technology (MEXT)[22H03573] ; National Key Research and Development Project of China[2021YFB1714400] ; Guangdong Provincial Key Laboratory[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号
WOS:000864567300001
出版者
EI入藏号
20224112889937
EI主题词
Directed graphs ; Learning systems
EI分类号
Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:8
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/405961
专题工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart City, Dept Comp Sci & Engn, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
4.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
5.Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, NSW, Australia
第一作者单位计算机科学与工程系;  南方科技大学
通讯作者单位计算机科学与工程系;  南方科技大学
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Li, Yongkang,Fan, Zipei,Yin, Du,et al. HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation[J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,2022,26(4):1625-1648.
APA
Li, Yongkang,Fan, Zipei,Yin, Du,Jiang, Renhe,Deng, Jinliang,&Song, Xuan.(2022).HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation.WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,26(4),1625-1648.
MLA
Li, Yongkang,et al."HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation".WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 26.4(2022):1625-1648.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Yongkang]的文章
[Fan, Zipei]的文章
[Yin, Du]的文章
百度学术
百度学术中相似的文章
[Li, Yongkang]的文章
[Fan, Zipei]的文章
[Yin, Du]的文章
必应学术
必应学术中相似的文章
[Li, Yongkang]的文章
[Fan, Zipei]的文章
[Yin, Du]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。