题名 | HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation |
作者 | |
通讯作者 | Fan, Zipei; Song, Xuan |
发表日期 | 2022-10-01
|
DOI | |
发表期刊 | |
ISSN | 1386-145X
|
EISSN | 1573-1413
|
卷号 | 26期号:4页码:1625-1648 |
摘要 | Friend recommendation from user trajectory is a vital real-world application of location-based social networks (LBSN) services. Previous statistical analysis indicated that social network relationships could explain 10% to 30% of human movement, especially long-distance travel. Therefore, it is necessary to recognize patterns from human mobility to assist the friend recommendation. However, previous works either modelled friendships and check-in records by simple graphs with only one connection between any two nodes or ignored a large amount of vital spatio-temporal information and semantic information in raw LBSN data. To overcome the limitation of the simple graph commonly seen in previous works, we leverage heterogeneous multigraph to model LBSN data and define various semantic connections between nodes. Against this background, we propose a Heterogeneous Multigraph Contrastive Learning (HMGCL) model to capture spatio-temporal characteristics of human trajectories for user node embedding learning. Extensive experiments show that our method outperforms the state-of-the-art approaches in six real-world city datasets. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Japan's Ministry of Education, Culture, Sports, Science, and Technology (MEXT)[22H03573]
; National Key Research and Development Project of China[2021YFB1714400]
; Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Software Engineering
|
WOS记录号 | WOS:000864567300001
|
出版者 | |
EI入藏号 | 20224112889937
|
EI主题词 | Directed graphs
; Learning systems
|
EI分类号 | Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
|
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/405961 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, SUSTech UTokyo Joint Res Ctr Super Smart City, Dept Comp Sci & Engn, Shenzhen, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen, Peoples R China 3.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China 4.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan 5.Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, NSW, Australia |
第一作者单位 | 计算机科学与工程系; 南方科技大学 |
通讯作者单位 | 计算机科学与工程系; 南方科技大学 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Li, Yongkang,Fan, Zipei,Yin, Du,et al. HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation[J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,2022,26(4):1625-1648.
|
APA |
Li, Yongkang,Fan, Zipei,Yin, Du,Jiang, Renhe,Deng, Jinliang,&Song, Xuan.(2022).HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation.WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS,26(4),1625-1648.
|
MLA |
Li, Yongkang,et al."HMGCL: Heterogeneous multigraph contrastive learning for LBSN friend recommendation".WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS 26.4(2022):1625-1648.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论