中文版 | English
题名

A Review on Evolutionary Multitask Optimization: Trends and Challenges

作者
通讯作者Zhong, Jinghui
发表日期
2022-10-01
DOI
发表期刊
ISSN
1089-778X
EISSN
1941-0026
卷号26期号:5页码:941-960
摘要
Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extraction across distinct optimization task domains. Among these research strands, one representative tributary is evolutionary multitask optimization (EMTO) that aims to resolve multiple optimization tasks simultaneously. The underlying attribute of implicit parallelism for EAs can well incorporate with the framework of EMTO, giving rise to the ascending EMTO studies. This review is intended to present a detailed exposition on the research in the EMTO area. We reveal the core components for designing the EMTO algorithms. Subsequently, we organize the works lying in the fusions between EMTO and traditional EAs. By analyzing the associations for diverse strategies in different branches of EMTO, this review uncovers the research trends and the potentially important directions, with additional interesting real-world applications mentioned.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Key Project of Science and Technology Innovation 2030 through the Ministry of Science and Technology of China[2018AAA0101304] ; National Natural Science Foundation of China["62072160","62076098"] ; Guangdong Provincial Key Laboratory[2020B121201001] ; Guangdong Natural Science Foundation Research Team[2018B030312003]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:000862385200014
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9665768
引用统计
被引频次[WOS]:64
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/405986
专题南方科技大学
作者单位
1.South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
2.Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
4.Hanyang Univ, Ansan 15588, South Korea
5.Chaoyang Univ Technol, Taichung 41349, Taiwan
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Wei, Tingyang,Wang, Shibin,Zhong, Jinghui,et al. A Review on Evolutionary Multitask Optimization: Trends and Challenges[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2022,26(5):941-960.
APA
Wei, Tingyang,Wang, Shibin,Zhong, Jinghui,Liu, Dong,&Zhang, Jun.(2022).A Review on Evolutionary Multitask Optimization: Trends and Challenges.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,26(5),941-960.
MLA
Wei, Tingyang,et al."A Review on Evolutionary Multitask Optimization: Trends and Challenges".IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 26.5(2022):941-960.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wei, Tingyang]的文章
[Wang, Shibin]的文章
[Zhong, Jinghui]的文章
百度学术
百度学术中相似的文章
[Wei, Tingyang]的文章
[Wang, Shibin]的文章
[Zhong, Jinghui]的文章
必应学术
必应学术中相似的文章
[Wei, Tingyang]的文章
[Wang, Shibin]的文章
[Zhong, Jinghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。