题名 | A Review on Evolutionary Multitask Optimization: Trends and Challenges |
作者 | |
通讯作者 | Zhong, Jinghui |
发表日期 | 2022-10-01
|
DOI | |
发表期刊 | |
ISSN | 1089-778X
|
EISSN | 1941-0026
|
卷号 | 26期号:5页码:941-960 |
摘要 | Evolutionary algorithms (EAs) possess strong problem-solving abilities and have been applied in a wide range of applications. However, they still suffer from a high computational burden and poor generalization ability. To overcome the limitations, numerous studies consider conducting knowledge extraction across distinct optimization task domains. Among these research strands, one representative tributary is evolutionary multitask optimization (EMTO) that aims to resolve multiple optimization tasks simultaneously. The underlying attribute of implicit parallelism for EAs can well incorporate with the framework of EMTO, giving rise to the ascending EMTO studies. This review is intended to present a detailed exposition on the research in the EMTO area. We reveal the core components for designing the EMTO algorithms. Subsequently, we organize the works lying in the fusions between EMTO and traditional EAs. By analyzing the associations for diverse strategies in different branches of EMTO, this review uncovers the research trends and the potentially important directions, with additional interesting real-world applications mentioned. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Key Project of Science and Technology Innovation 2030 through the Ministry of Science and Technology of China[2018AAA0101304]
; National Natural Science Foundation of China["62072160","62076098"]
; Guangdong Provincial Key Laboratory[2020B121201001]
; Guangdong Natural Science Foundation Research Team[2018B030312003]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000862385200014
|
出版者 | |
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9665768 |
引用统计 |
被引频次[WOS]:64
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/405986 |
专题 | 南方科技大学 |
作者单位 | 1.South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China 2.Henan Normal Univ, Coll Comp & Informat Engn, Xinxiang 453007, Henan, Peoples R China 3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China 4.Hanyang Univ, Ansan 15588, South Korea 5.Chaoyang Univ Technol, Taichung 41349, Taiwan |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Wei, Tingyang,Wang, Shibin,Zhong, Jinghui,et al. A Review on Evolutionary Multitask Optimization: Trends and Challenges[J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,2022,26(5):941-960.
|
APA |
Wei, Tingyang,Wang, Shibin,Zhong, Jinghui,Liu, Dong,&Zhang, Jun.(2022).A Review on Evolutionary Multitask Optimization: Trends and Challenges.IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION,26(5),941-960.
|
MLA |
Wei, Tingyang,et al."A Review on Evolutionary Multitask Optimization: Trends and Challenges".IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 26.5(2022):941-960.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论