中文版 | English
题名

Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading

作者
通讯作者Li, Zhenyu
发表日期
2022-12-01
DOI
发表期刊
ISSN
1045-9219
EISSN
1558-2183
卷号33期号:12页码:4918-4934
摘要
Programmable switches are recently used for accelerating data-intensive distributed applications. Some computational tasks, traditionally performed on servers in data centers, are offloaded into the network on programmable switches. These tasks may require the support of on-the-fly floating-point operations. Unfortunately, programmable switches are restricted to simple integer arithmetic operations. Existing systems circumvent this restriction by converting floats to integers or relying on local CPUs of switches, incurring extra processing delayed and accuracy loss. To address this gap, we propose NetFC, a table-lookup method to achieve on-the-fly in-network floating-point arithmetic operations nearly without accuracy loss. Specifically, NetFC utilizes logarithm projection and transformation to convert the original huge table enumerating all operands and results into several much smaller tables that can fit into the data plane of programmable switches. To cope with the table inflation problem on 32-bit floats, we also propose an approximation method that further breaks the large tables into smaller ones. In addition, NetFC leverages two optimizations to improve accuracy and reduce on-chip memory consumption. We use both synthetic and real-life datasets to evaluate NetFC. The experimental results show that the average accuracy of NetFC is above 99.9% with only 448KB memory consumption for 16-bit floats and 99.1% with 496KB memory consumption for 32-bit floats. Furthermore, we integrate NetFC into two distributed applications and two in-network telemetry systems to show its effectiveness in further improving the performance.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Key R&D Program of China[2020YFB1805600] ; National Natural Science Foundation of China["U20A20180","62002344"] ; Beijing Natural Science Foundation[JQ20024]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000864178200003
出版者
ESI学科分类
COMPUTER SCIENCE
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9896997
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/405988
专题南方科技大学
作者单位
1.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Purple Mt Labs, Nanjing 211111, Peoples R China
4.Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
5.Chinese Acad Sci, Comp Network Informat Ctr, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cui, Penglai,Pan, Heng,Li, Zhenyu,et al. Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading[J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,2022,33(12):4918-4934.
APA
Cui, Penglai.,Pan, Heng.,Li, Zhenyu.,Zhang, Penghao.,Miao, Tianhao.,...&Xie, Gaogang.(2022).Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading.IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,33(12),4918-4934.
MLA
Cui, Penglai,et al."Enabling In-Network Floating-Point Arithmetic for Efficient Computation Offloading".IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 33.12(2022):4918-4934.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Enabling_In-Network_(3238KB)期刊论文作者接受稿限制开放CC BY-NC-SA
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Cui, Penglai]的文章
[Pan, Heng]的文章
[Li, Zhenyu]的文章
百度学术
百度学术中相似的文章
[Cui, Penglai]的文章
[Pan, Heng]的文章
[Li, Zhenyu]的文章
必应学术
必应学术中相似的文章
[Cui, Penglai]的文章
[Pan, Heng]的文章
[Li, Zhenyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。