[1] KATKOV M, ROMANI S, TSODYKS M. Memory Retrieval from FirstPrinciples [J]. Neuron, 2017, 94(5): 1027-32.
[2] BERRIDGE K C, KRINGELBACH M L. Pleasure systems in the brain [J].Neuron, 2015, 86(3): 646-64.
[3] MENDELSOHN A I, DASEN J S, JESSELL T M. Divergent Hox Coding andEvasion of Retinoid Signaling Specifies Motor Neurons Innervating DigitMuscles [J]. Neuron, 2017, 93(4): 792-805.e4.
[4] KIM J, ZHANG X, MURALIDHAR S, et al. Basolateral to Central AmygdalaNeural Circuits for Appetitive Behaviors [J]. Neuron, 2017, 93(6):1464-79.e5.
[5] DOYLE M, KIEBLER M A. Mechanisms of dendritic mRNA transport andits role in synaptic tagging [J]. Embo j, 2011, 30(17): 3540-52.
[6] WIDAGDO J, ANGGONO V. The m6A-epitranscriptomic signature inneurobiology: from neurodevelopment to brain plasticity [J]. J Neurochem,2018, 147(2): 137-52.
[7] DESROSIERS R, FRIDERICI K, ROTTMAN F. Identification of methylatednucleosides in messenger RNA from Novikoff hepatoma cells [J]. Proc NatlAcad Sci U S A, 1974, 71(10): 3971-5.
[8] MEYER K D, SALETORE Y, ZUMBO P, et al. Comprehensive analysis ofmRNA methylation reveals enrichment in 3' UTRs and near stop codons [J].Cell, 2012, 149(7): 1635-46.
[9] DOMINISSINI D, MOSHITCH-MOSHKOVITZ S, SCHWARTZ S, et al.Topology of the human and mouse m6A RNA methylomes revealed bym6A-seq [J]. Nature, 2012, 485(7397): 201-6.
[10] SCHWARTZ S, MUMBACH M R, JOVANOVIC M, et al. Perturbation ofm6A writers reveals two distinct classes of mRNA methylation at internaland 5' sites [J]. Cell reports, 2014, 8(1): 284-96.
[11] CHANG M, LV H, ZHANG W, et al. Region-specific RNA m(6)Amethylation represents a new layer of control in the gene regulatory networkin the mouse brain [J]. Open biology, 2017, 7(9):
[12] WIDAGDO J, ZHAO Q Y, KEMPEN M J, et al. Experience-DependentAccumulation of N6-Methyladenosine in the Prefrontal Cortex Is Associatedwith Memory Processes in Mice [J]. The Journal of neuroscience : the officialjournal of the Society for Neuroscience, 2016, 36(25): 6771-7.
[13] ENGEL M, CHEN A. The emerging role of mRNA methylation in normal andpathological behavior [J]. Genes, brain, and behavior, 2018, 17(3): e12428.
[14] WENG Y L, WANG X, AN R, et al. Epitranscriptomic m(6)A Regulation ofAxon Regeneration in the Adult Mammalian Nervous System [J]. Neuron,2018, 97(2): 313-25.e6.
[15] BOKAR J A, SHAMBAUGH M E, POLAYES D, et al. Purification andcDNA cloning of the AdoMet-binding subunit of the human mRNA(N6-adenosine)-methyltransferase [J]. RNA (New York, NY), 1997, 3(11):1233-47.
[16] WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependentregulation of messenger RNA stability [J]. Nature, 2014, 505(7481): 117-20.
[17] LIU N, ZHOU K I, PARISIEN M, et al. N6-methyladenosine alters RNAstructure to regulate binding of a low-complexity protein [J]. Nucleic acidsresearch, 2017, 45(10): 6051-63.
[18] KE S, PANDYA-JONES A, SAITO Y, et al. m(6)A mRNA modifications aredeposited in nascent pre-mRNA and are not required for splicing but dospecify cytoplasmic turnover [J]. Genes & development, 2017, 31(10):990-1006.
[19] ALARCON C R, LEE H, GOODARZI H, et al. N6-methyladenosine marksprimary microRNAs for processing [J]. Nature, 2015, 519(7544): 482-5.
[20] LIN S, CHOE J, DU P, et al. The m(6)A Methyltransferase METTL3Promotes Translation in Human Cancer Cells [J]. Molecular cell, 2016, 62(3):335-45.
[21] JIA G, FU Y, ZHAO X, et al. N6-methyladenosine in nuclear RNA is a majorsubstrate of the obesity-associated FTO [J]. Nature chemical biology, 2011,7(12): 885-7.
[22] ZHENG G, DAHL J A, NIU Y, et al. ALKBH5 is a mammalian RNAdemethylase that impacts RNA metabolism and mouse fertility [J]. Molecularcell, 2013, 49(1): 18-29.
[23] AIK W, SCOTTI J S, CHOI H, et al. Structure of human RNAN(6)-methyladenine demethylase ALKBH5 provides insights into itsmechanisms of nucleic acid recognition and demethylation [J]. Nucleic acidsresearch, 2014, 42(7): 4741-54.
[24] GERKEN T, GIRARD C A, TUNG Y C, et al. The obesity-associated FTOgene encodes a 2-oxoglutarate-dependent nucleic acid demethylase [J].Science, 2007, 318(5855): 1469-72.
[25] MCTAGGART J S, LEE S, IBERL M, et al. FTO is expressed in neuronesthroughout the brain and its expression is unaltered by fasting [J]. PloS one,2011, 6(11): e27968.
[26] HESS M E, HESS S, MEYER K D, et al. The fat mass and obesity associatedgene (Fto) regulates activity of the dopaminergic midbrain circuitry [J].Nature neuroscience, 2013, 16(8): 1042-8.
[27] LI L, ZANG L, ZHANG F, et al. Fat mass and obesity-associated (FTO)protein regulates adult neurogenesis [J]. Human molecular genetics, 2017,26(13): 2398-411.
[28] ZOU S, TOH J D, WONG K H, et al. N(6)-Methyladenosine: aconformational marker that regulates the substrate specificity of humandemethylases FTO and ALKBH5 [J]. Scientific reports, 2016, 6(25677.
[29] SPITALE R C, FLYNN R A, ZHANG Q C, et al. Structural imprints in vivodecode RNA regulatory mechanisms [J]. Nature, 2015, 519(7544): 486-90.
[30] LIU N, DAI Q, ZHENG G, et al. N(6)-methyladenosine-dependent RNAstructural switches regulate RNA-protein interactions [J]. Nature, 2015,518(7540): 560-4.
[31] ZHANG Z, THELER D, KAMINSKA K H, et al. The YTH domain is a novelRNA binding domain [J]. The Journal of biological chemistry, 2010, 285(19):14701-10.
[32] ARGUELLO A E, DELIBERTO A N, KLEINER R E. RNA ChemicalProteomics Reveals the N(6)-Methyladenosine (m(6)A)-RegulatedProtein-RNA Interactome [J]. Journal of the American Chemical Society,2017, 139(48): 17249-52.
[33] EDUPUGANTI R R, GEIGER S, LINDEBOOM R G H, et al.N(6)-methyladenosine (m(6)A) recruits and repels proteins to regulatemRNA homeostasis [J]. Nature structural & molecular biology, 2017, 24(10):870-8.
[34] FU Y, DOMINISSINI D, RECHAVI G, et al. Gene expression regulationmediated through reversible m(6)A RNA methylation [J]. Nature reviewsGenetics, 2014, 15(5): 293-306.
[35] MOLINIE B, WANG J, LIM K S, et al. m(6)A-LAIC-seq reveals the censusand complexity of the m(6)A epitranscriptome [J]. Nature methods, 2016,13(8): 692-8.
[36] DU H, ZHAO Y, HE J, et al. YTHDF2 destabilizes m(6)A-containing RNAthrough direct recruitment of the CCR4-NOT deadenylase complex [J].Nature communications, 2016, 7(12626.
[37] SIMONE L E, KEENE J D. Mechanisms coordinating ELAV/Hu mRNAregulons [J]. Current opinion in genetics & development, 2013, 23(1): 35-43.
[38] LI A, CHEN Y S, PING X L, et al. Cytoplasmic m(6)A reader YTHDF3promotes mRNA translation [J]. Cell research, 2017, 27(3): 444-7.
[39] SHI H, WANG X, LU Z, et al. YTHDF3 facilitates translation and decay ofN(6)-methyladenosine-modified RNA [J]. Cell research, 2017, 27(3):315-28.
[40] BASSELL G J, WARREN S T. Fragile X syndrome: loss of local mRNAregulation alters synaptic development and function [J]. Neuron, 2008, 60(2):201-14.
[41] YU J, CHEN M, HUANG H, et al. Dynamic m6A modification regulateslocal translation of mRNA in axons [J]. Nucleic acids research, 2018, 46(3):1412-23.
[42] GERSHONI-EMEK N, MAZZA A, CHEIN M, et al. Proteomic Analysis ofDynein-Interacting Proteins in Amyotrophic Lateral Sclerosis SynaptosomesReveals Alterations in the RNA-Binding Protein Staufen1 [J]. Molecular &cellular proteomics : MCP, 2016, 15(2): 506-22.
[43] FLAVELL S W, GREENBERG M E. Signaling mechanisms linking neuronalactivity to gene expression and plasticity of the nervous system [J]. Annualreview of neuroscience, 2008, 31(563-90.
[44] WALTERS B J, MERCALDO V, GILLON C J, et al. The Role of The RNADemethylase FTO (Fat Mass and Obesity-Associated) and mRNAMethylation in Hippocampal Memory Formation [J].Neuropsychopharmacology : official publication of the American College ofNeuropsychopharmacology, 2017, 42(7): 1502-10.
[45] GILMARTIN M R, BALDERSTON N L, HELMSTETTER F J. Prefrontalcortical regulation of fear learning [J]. Trends in neurosciences, 2014, 37(8):455-64.
[46] LIU N, PAN T. N6-methyladenosine-encoded epitranscriptomics [J]. Naturestructural & molecular biology, 2016, 23(2): 98-102.
[47] HSU P J, SHI H, HE C. Epitranscriptomic influences on development anddisease [J]. Genome biology, 2017, 18(1): 197.
[48] FISCHER J, KOCH L, EMMERLING C, et al. Inactivation of the Fto geneprotects from obesity [J]. Nature, 2009, 458(7240): 894-8.
[49] GAO X, SHIN Y H, LI M, et al. The fat mass and obesity associated geneFTO functions in the brain to regulate postnatal growth in mice [J]. PloS one,2010, 5(11): e14005.
[50] GEULA S, MOSHITCH-MOSHKOVITZ S, DOMINISSINI D, et al. Stemcells. m6A mRNA methylation facilitates resolution of naive pluripotencytoward differentiation [J]. Science, 2015, 347(6225): 1002-6.
[51] YOON K J, RINGELING F R, VISSERS C, et al. Temporal Control ofMammalian Cortical Neurogenesis by m(6)A Methylation [J]. Cell, 2017,171(4): 877-89.e17.
[52] LEE J A, DAMIANOV A, LIN C H, et al. Cytoplasmic Rbfox1 Regulates theExpression of Synaptic and Autism-Related Genes [J]. Neuron, 2016, 89(1):113-28.
[53] FRAKES A E, FERRAIUOLO L, HAIDET-PHILLIPS A M, et al. Microgliainduce motor neuron death via the classical NF-kappaB pathway inamyotrophic lateral sclerosis [J]. Neuron, 2014, 81(5): 1009-23.
[54] GAL J S, MOROZOV Y M, AYOUB A E, et al. Molecular and morphologicalheterogeneity of neural precursors in the mouse neocortical proliferativezones [J]. The Journal of neuroscience : the official journal of the Society forNeuroscience, 2006, 26(3): 1045-56.
[55] FERNANDEZ V, LLINARES-BENADERO C, BORRELL V. Cerebral cortexexpansion and folding: what have we learned? [J]. EMBO J, 2016, 35(10):1021-44.
[56] BAYER S A, ALTMAN J. Development of the endopiriform nucleus and theclaustrum in the rat brain [J]. Neuroscience, 1991, 45(2): 391-412.
[57] MIYATA T, KAWAGUCHI D, KAWAGUCHI A, et al. Mechanisms thatregulate the number of neurons during mouse neocortical development [J].Current opinion in neurobiology, 2010, 20(1): 22-8.
[58] CHENN A, WALSH C A. Regulation of cerebral cortical size by control ofcell cycle exit in neural precursors [J]. Science, 2002, 297(5580): 365-9.
[59] KINGSBURY M A, REHEN S K, CONTOS J J, et al. Non-proliferativeeffects of lysophosphatidic acid enhance cortical growth and folding [J].Nature neuroscience, 2003, 6(12): 1292-9.
[60] GOTZ M, HUTTNER W B. The cell biology of neurogenesis [J]. Nat RevMol Cell Biol, 2005, 6(10): 777-88.
[61] HANSEN D V, LUI J H, PARKER P R, et al. Neurogenic radial glia in theouter subventricular zone of human neocortex [J]. Nature, 2010, 464(7288):554-61.
[62] HAUBENSAK W, ATTARDO A, DENK W, et al. Neurons arise in the basalneuroepithelium of the early mammalian telencephalon: a major site ofneurogenesis [J]. Proceedings of the National Academy of Sciences of theUnited States of America, 2004, 101(9): 3196-201.
[63] MIYATA T, KAWAGUCHI A, SAITO K, et al. Asymmetric production ofsurface-dividing and non-surface-dividing cortical progenitor cells [J].Development (Cambridge, England), 2004, 131(13): 3133-45.
[64] NOCTOR S C, MARTINEZ-CERDENO V, IVIC L, et al. Cortical neuronsarise in symmetric and asymmetric division zones and migrate throughspecific phases [J]. Nature neuroscience, 2004, 7(2): 136-44.
[65] BETIZEAU M, CORTAY V, PATTI D, et al. Precursor diversity andcomplexity of lineage relationships in the outer subventricular zone of theprimate [J]. Neuron, 2013, 80(2): 442-57.
[66] ATTARDO A, CALEGARI F, HAUBENSAK W, et al. Live imaging at theonset of cortical neurogenesis reveals differential appearance of the neuronalphenotype in apical versus basal progenitor progeny [J]. PloS one, 2008, 3(6):e2388.
[67] WANG X, TSAI J W, LAMONICA B, et al. A new subtype of progenitor cellin the mouse embryonic neocortex [J]. Nature neuroscience, 2011, 14(5):555-61.
[68] FISH J L, DEHAY C, KENNEDY H, et al. Making bigger brains-theevolution of neural-progenitor-cell division [J]. Journal of cell science, 2008,121(Pt 17): 2783-93.
[69] TAVERNA E, GOTZ M, HUTTNER W B. The cell biology of neurogenesis:toward an understanding of the development and evolution of the neocortex[J]. Annual review of cell and developmental biology, 2014, 30(465-502.
[70] ENGLUND C, FINK A, LAU C, et al. Pax6, Tbr2, and Tbr1 are expressedsequentially by radial glia, intermediate progenitor cells, and postmitoticneurons in developing neocortex [J]. The Journal of neuroscience : theofficial journal of the Society for Neuroscience, 2005, 25(1): 247-51.
[71] KOWALCZYK T, PONTIOUS A, ENGLUND C, et al. Intermediate neuronalprogenitors (basal progenitors) produce pyramidal-projection neurons for alllayers of cerebral cortex [J]. Cerebral cortex (New York, NY : 1991), 2009,19(10): 2439-50.
[72] ANDERSON S A, EISENSTAT D D, SHI L, et al. Interneuron migration frombasal forebrain to neocortex: dependence on Dlx genes [J]. Science, 1997,278(5337): 474-6.
[73] STANCIK E K, NAVARRO-QUIROGA I, SELLKE R, et al. Heterogeneity inventricular zone neural precursors contributes to neuronal fate diversity inthe postnatal neocortex [J]. The Journal of neuroscience : the official journalof the Society for Neuroscience, 2010, 30(20): 7028-36.
[74] TYLER W A, MEDALLA M, GUILLAMON-VIVANCOS T, et al. Neuralprecursor lineages specify distinct neocortical pyramidal neuron types [J].The Journal of neuroscience : the official journal of the Society forNeuroscience, 2015, 35(15): 6142-52.
[75] PILZ G A, SHITAMUKAI A, REILLO I, et al. Amplification of progenitorsin the mammalian telencephalon includes a new radial glial cell type [J].Nature communications, 2013, 4(2125.
[76] SHITAMUKAI A, KONNO D, MATSUZAKI F. Oblique radial glialdivisions in the developing mouse neocortex induce self-renewingprogenitors outside the germinal zone that resemble primate outersubventricular zone progenitors [J]. The Journal of neuroscience : the officialjournal of the Society for Neuroscience, 2011, 31(10): 3683-95.
[77] KWAN K Y, SESTAN N, ANTON E S. Transcriptional co-regulation ofneuronal migration and laminar identity in the neocortex [J]. Development(Cambridge, England), 2012, 139(9): 1535-46.
[78] DEFELIPE J, FARINAS I. The pyramidal neuron of the cerebral cortex:morphological and chemical characteristics of the synaptic inputs [J].Progress in neurobiology, 1992, 39(6): 563-607.
[79] O'LEARY D D, KOESTER S E. Development of projection neuron types,axon pathways, and patterned connections of the mammalian cortex [J].Neuron, 1993, 10(6): 991-1006.
[80] MOLYNEAUX B J, ARLOTTA P, MENEZES J R, et al. Neuronal subtypespecification in the cerebral cortex [J]. Nature reviews Neuroscience, 2007,8(6): 427-37.
[81] MIYOSHI G, BUTT S J, TAKEBAYASHI H, et al. Physiologically distincttemporal cohorts of cortical interneurons arise from telencephalicOlig2-expressing precursors [J]. The Journal of neuroscience : the officialjournal of the Society for Neuroscience, 2007, 27(29): 7786-98.
[82] ANGEVINE J B, JR., SIDMAN R L. Autoradiographic study of cellmigration during histogenesis of cerebral cortex in the mouse [J]. Nature,1961, 192(766-8.
[83] RAKIC P. Specification of cerebral cortical areas [J]. Science, 1988,241(4862): 170-6.
[84] MARIN-PADILLA M. Early prenatal ontogenesis of the cerebral cortex(neocortex) of the cat (Felis domestica). A Golgi study. I. The primordialneocortical organization [J]. Zeitschrift fur Anatomie undEntwicklungsgeschichte, 1971, 134(2): 117-45.
[85] MARIN-PADILLA M. Dual origin of the mammalian neocortex andevolution of the cortical plate [J]. Anatomy and embryology, 1978, 152(2):109-26.
[86] DE CARLOS J A, O'LEARY D D. Growth and targeting of subplate axonsand establishment of major cortical pathways [J]. The Journal ofneuroscience : the official journal of the Society for Neuroscience, 1992,12(4): 1194-211.
[87] MOLLIVER M E, KOSTOVIC I, VAN DER LOOS H. The development ofsynapses in cerebral cortex of the human fetus [J]. Brain research, 1973,50(2): 403-7.
[88] RAKIC P. Prenatal genesis of connections subserving ocular dominance inthe rhesus monkey [J]. Nature, 1976, 261(5560): 467-71.
[89] KOSTOVIC I, RAKIC P. Cytology and time of origin of interstitial neuronsin the white matter in infant and adult human and monkey telencephalon [J].Journal of neurocytology, 1980, 9(2): 219-42.
[90] ALLENDOERFER K L, SHATZ C J. The subplate, a transient neocorticalstructure: its role in the development of connections between thalamus andcortex [J]. Annual review of neuroscience, 1994, 17(185-218.
[91] HERRMANN K, ANTONINI A, SHATZ C J. Ultrastructural evidence forsynaptic interactions between thalamocortical axons and subplate neurons [J].The European journal of neuroscience, 1994, 6(11): 1729-42.
[92] RAKIC P. Neurons in rhesus monkey visual cortex: systematic relationbetween time of origin and eventual disposition [J]. Science, 1974,183(4123): 425-7.
[93] CAVINESS V S, JR. Neocortical histogenesis in normal and reeler mice: adevelopmental study based upon
[3H]thymidine autoradiography [J]. Brainresearch, 1982, 256(3): 293-302.
[94] FRANTZ G D, MCCONNELL S K. Restriction of late cerebral corticalprogenitors to an upper-layer fate [J]. Neuron, 1996, 17(1): 55-61.
[95] D'ARCANGELO G, CURRAN T. Reeler: new tales on an old mutant mouse[J]. BioEssays : news and reviews in molecular, cellular and developmentalbiology, 1998, 20(3): 235-44.
[96] LAMBERT DE ROUVROIT C, GOFFINET A M. A new view of earlycortical development [J]. Biochemical pharmacology, 1998, 56(11): 1403-9.
[97] ANTON E S, KREIDBERG J A, RAKIC P. Distinct functions of alpha3 andalpha(v) integrin receptors in neuronal migration and laminar organization ofthe cerebral cortex [J]. Neuron, 1999, 22(2): 277-89.
[98] YOKOTA Y, GASHGHAEI H T, HAN C, et al. Radial glial dependent andindependent dynamics of interneuronal migration in the developing cerebralcortex [J]. PloS one, 2007, 2(8): e794.
[99] TISSIR F, GOFFINET A M. Reelin and brain development [J]. Naturereviews Neuroscience, 2003, 4(6): 496-505.
[100]KRIEGSTEIN A R, NOCTOR S C. Patterns of neuronal migration in theembryonic cortex [J]. Trends in neurosciences, 2004, 27(7): 392-9.
[101]LOTURCO J J, BAI J. The multipolar stage and disruptions in neuronalmigration [J]. Trends in neurosciences, 2006, 29(7): 407-13.
[102]LIU J S. Molecular genetics of neuronal migration disorders [J]. Currentneurology and neuroscience reports, 2011, 11(2): 171-8.
[103]MANZINI M C, WALSH C A. What disorders of cortical development tell usabout the cortex: one plus one does not always make two [J]. Current opinionin genetics & development, 2011, 21(3): 333-9.
[104]NAGANO T, MORIKUBO S, SATO M. Filamin A and FILIP (FilaminA-Interacting Protein) regulate cell polarity and motility in neocorticalsubventricular and intermediate zones during radial migration [J]. TheJournal of neuroscience : the official journal of the Society for Neuroscience,2004, 24(43): 9648-57.
[105]BAI J, RAMOS R L, ACKMAN J B, et al. RNAi reveals doublecortin isrequired for radial migration in rat neocortex [J]. Nature neuroscience, 2003,6(12): 1277-83.
[106]GONGIDI V, RING C, MOODY M, et al. SPARC-like 1 regulates theterminal phase of radial glia-guided migration in the cerebral cortex [J].Neuron, 2004, 41(1): 57-69.
[107]RICE D S, CURRAN T. Role of the reelin signaling pathway in centralnervous system development [J]. Annual review of neuroscience, 2001,24(1005-39.
[108]NADARAJAH B, PARNAVELAS J G. Modes of neuronal migration in thedeveloping cerebral cortex [J]. Nature reviews Neuroscience, 2002, 3(6):423-32.
[109]MARIN O, RUBENSTEIN J L. Cell migration in the forebrain [J]. Annualreview of neuroscience, 2003, 26(441-83.
[110]XU Q, COBOS I, DE LA CRUZ E, et al. Origins of cortical interneuronsubtypes [J]. The Journal of neuroscience : the official journal of the Societyfor Neuroscience, 2004, 24(11): 2612-22.
[111]WONDERS C P, ANDERSON S A. The origin and specification of corticalinterneurons [J]. Nature reviews Neuroscience, 2006, 7(9): 687-96.
[112]SESSA A, MAO C A, COLASANTE G, et al. Tbr2-positive intermediate(basal) neuronal progenitors safeguard cerebral cortex expansion bycontrolling amplification of pallial glutamatergic neurons and attraction ofsubpallial GABAergic interneurons [J]. Genes & development, 2010, 24(16):1816-26.
[113]SANCHEZ-ALCANIZ J A, HAEGE S, MUELLER W, et al. Cxcr7 controlsneuronal migration by regulating chemokine responsiveness [J]. Neuron,2011, 69(1): 77-90.
[114]HONGAY C F, ORR-WEAVER T L. Drosophila Inducer of MEiosis 4 (IME4)is required for Notch signaling during oogenesis [J]. Proc Natl Acad Sci U SA, 2011, 108(36): 14855-60.
[115]LETINIC K, ZONCU R, RAKIC P. Origin of GABAergic neurons in thehuman neocortex [J]. Nature, 2002, 417(6889): 645-9.
[116]YU X, ZECEVIC N. Dorsal radial glial cells have the potential to generatecortical interneurons in human but not in mouse brain [J]. The Journal ofneuroscience : the official journal of the Society for Neuroscience, 2011,31(7): 2413-20.
[117]FERTUZINHOS S, KRSNIK Z, KAWASAWA Y I, et al. Selective depletionof molecularly defined cortical interneurons in human holoprosencephalywith severe striatal hypoplasia [J]. Cerebral cortex (New York, NY : 1991),2009, 19(9): 2196-207.
[118]ANG E S, JR., HAYDAR T F, GLUNCIC V, et al. Four-dimensionalmigratory coordinates of GABAergic interneurons in the developing mousecortex [J]. The Journal of neuroscience : the official journal of the Society forNeuroscience, 2003, 23(13): 5805-15.
[119]MIYOSHI G, FISHELL G. GABAergic interneuron lineages selectively sortinto specific cortical layers during early postnatal development [J]. Cerebralcortex (New York, NY : 1991), 2011, 21(4): 845-52.
[120]MIYOSHI G, HJERLING-LEFFLER J, KARAYANNIS T, et al. Genetic fatemapping reveals that the caudal ganglionic eminence produces a large anddiverse population of superficial cortical interneurons [J]. The Journal ofneuroscience : the official journal of the Society for Neuroscience, 2010,30(5): 1582-94.
[121]LODATO S, ROUAUX C, QUAST K B, et al. Excitatory projection neuronsubtypes control the distribution of local inhibitory interneurons in thecerebral cortex [J]. Neuron, 2011, 69(4): 763-79.
[122]PORTER F D, DRAGO J, XU Y, et al. Lhx2, a LIM homeobox gene, isrequired for eye, forebrain, and definitive erythrocyte development [J].Development, 1997, 124(15): 2935-44.
[123]DUAN W, ZHANG Y P, HOU Z, et al. Novel Insights into NeuN: fromNeuronal Marker to Splicing Regulator [J]. Molecular neurobiology, 2016,53(3): 1637-47.
[124]CEPKO C. Intrinsically different retinal progenitor cells produce specifictypes of progeny [J]. Nat Rev Neurosci, 2014, 15(9): 615-27.
[125]KRANZ A, FU J, DUERSCHKE K, et al. An improved Flp deleter mouse inC57Bl/6 based on Flpo recombinase [J]. Genesis, 2010, 48(8): 512-20.
[126]YAMAUCHI Y, ABE K, MANTANI A, et al. A novel transgenic techniquethat allows specific marking of the neural crest cell lineage in mice [J].Developmental biology, 1999, 212(1): 191-203.
[127]CHAI Y, JIANG X, ITO Y, et al. Fate of the mammalian cranial neural crestduring tooth and mandibular morphogenesis [J]. Development (Cambridge,England), 2000, 127(8): 1671-9.
[128]SIMEONE A, GULISANO M, ACAMPORA D, et al. Two vertebratehomeobox genes related to the Drosophila empty spiracles gene areexpressed in the embryonic cerebral cortex [J]. Embo j, 1992, 11(7):2541-50.
[129]SIMEONE A, ACAMPORA D, GULISANO M, et al. Nested expressiondomains of four homeobox genes in developing rostral brain [J]. Nature,1992, 358(6388): 687-90.
[130]BRIATA P, DI BLAS E, GULISANO M, et al. EMX1 homeoprotein isexpressed in cell nuclei of the developing cerebral cortex and in the axons ofthe olfactory sensory neurons [J]. Mechanisms of development, 1996, 57(2):169-80.
[131]PUELLES L, KUWANA E, PUELLES E, et al. Pallial and subpallialderivatives in the embryonic chick and mouse telencephalon, traced by theexpression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1 [J]. TheJournal of comparative neurology, 2000, 424(3): 409-38.
[132]CHAN C H, GODINHO L N, THOMAIDOU D, et al. Emx1 is a marker forpyramidal neurons of the cerebral cortex [J]. Cerebral cortex (New York, NY :1991), 2001, 11(12): 1191-8.
修改评论