[1] Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strengthof major muscle groups related to age, body mass, height, and sex in 178 healthysubjects[J]. European journal of applied physiology, 2012, 112(1): 267-275.
[2] Bohannon R W. Reference values for extremity muscle strength obtained by handheld dynamometry from adults aged 20 to 79 years[J]. Archives of physicalmedicine and rehabilitation, 1997, 78(1): 26-32.
[3] Fugl-Meyer A R, Gustafsson L, Burstedt Y. Isokinetic and static plantar flexioncharacteristics[J]. European journal of applied physiology and occupationalphysiology, 1980, 45(2-3): 221-234.
[4] Masmoudi K, Aouicha M S, Fki H, et al. The six minute walk test: which predictivevalues to apply for Tunisian subjects aged between 40 and 80 years?[J]. La Tunisiemedicale, 2008, 86(1): 20-26.
[5] Tudor-Locke C, Bassett D R. How many steps/day are enough?[J]. Sports medicine,2004, 34(1): 1-8.
[6] Asbeck A T, Dyer R J, Larusson A F, et al. Biologically-inspired softexosuit[C]//2013 IEEE 13th International Conference on Rehabilitation Robotics(ICORR). IEEE, 2013: 1-8.
[7] Wehner M, Quinlivan B, Aubin P M, et al. A lightweight soft exosuit for gaitassistance[C]//2013 IEEE International Conference on Robotics and Automation.IEEE, 2013: 3362-3369.
[8] Asbeck A T, De Rossi S M M, Holt K G, et al. A biologically inspired soft exosuitfor walking assistance[J]. The International Journal of Robotics Research, 2015,34(6): 744-762.
[9] Ding Y, Galiana I, Siviy C, et al. IMU-based iterative control for hip extensionassistance with a soft exosuit[C]//2016 IEEE International Conference on Roboticsand Automation (ICRA). IEEE, 2016: 3501-3508.
[10] Ding Y, Panizzolo F A, Siviy C, et al. Effect of timing of hip extension assistanceduring loaded walking with a soft exosuit[J]. Journal of neuroengineering andrehabilitation, 2016, 13(1): 87.
[11] Lee S, Crea S, Malcolm P, et al. Controlling negative and positive power at the anklewith a soft exosuit[C]//2016 IEEE International Conference on Robotics andAutomation (ICRA). IEEE, 2016: 3509-3515.
[12] Panizzolo F A, Galiana I, Asbeck A T, et al. A biologically-inspired multi-joint softexosuit that can reduce the energy cost of loaded walking[J]. Journal ofneuroengineering and rehabilitation, 2016, 13(1): 43.
[13] Awad L N, Bae J, Kudzia P, et al. Reducing circumduction and hip hiking duringhemiparetic walking through targeted assistance of the paretic limb using a softrobotic exosuit[J]. American journal of physical medicine & rehabilitation, 2017,96(10): S157-S164.
[14] Awad L N, Bae J, O’Donnell K, et al. A soft robotic exosuit improves walking inpatients after stroke[J]. Science translational medicine, 2017, 9(400): eaai9084.
[15] Ding Y, Galiana I, Asbeck A T, et al. Biomechanical and physiological evaluation ofmulti-joint assistance with soft exosuits[J]. IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 2016, 25(2): 119-130.
[16] Lee G, Kim J, Panizzolo F A, et al. Reducing the metabolic cost of running with atethered soft exosuit[J]. Sci. Robot., 2017, 2(6): eaan6708.
[17] Malcolm P, Lee S, Crea S, et al. Varying negative work assistance at the ankle witha soft exosuit during loaded walking[J]. Journal of neuroengineering andrehabilitation, 2017, 14(1): 62.
[18] Malcolm P, Rossi D M, Siviy C, et al. Continuous sweep versus discrete stepprotocols for studying effects of wearable robot assistance magnitude[J]. Journal ofneuroengineering and rehabilitation, 2017, 14(1): 72.
[19] Quinlivan B T, Lee S, Malcolm P, et al. Assistance magnitude versus metabolic costreductions for a tethered multiarticular soft exosuit[J]. Sci Robot, 2017, 2(2): 4416.
[20] Yandell M B, Quinlivan B T, Popov D, et al. Physical interface dynamics alter howrobotic exosuits augment human movement: implications for optimizing wearableassistive devices[J]. Journal of neuroengineering and rehabilitation, 2017, 14(1): 40.
[21] Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuitfor paretic ankle assistance in walking after stroke[C]//2018 IEEE InternationalConference on Robotics and Automation (ICRA). IEEE, 2018: 2820-2827.
[22] Ding Y, Kim M, Kuindersma S, et al. Human-in-the-loop optimization of hipassistance with a soft exosuit during walking[J]. Sci. Robot., 2018, 3(15): eaar5438.
[23] Kim J, Heimgartner R, Lee G, et al. Autonomous and portable soft exosuit for hipextension assistance with online walking and running detection algorithm[C]//2018IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018:1-8.
[24] Lee S, Karavas N, Quinlivan B T, et al. Autonomous multi-joint soft exosuit forassistance with walking Overground[C]//2018 IEEE International Conference onRobotics and Automation (ICRA). IEEE, 2018: 2812-2819.
[25] Lee S, Kim J, Baker L, et al. Autonomous multi-joint soft exosuit withaugmentation-power-based control parameter tuning reduces energy cost of loadedwalking[J]. Journal of neuroengineering and rehabilitation, 2018, 15(1): 66.
[26] Grimmer M, Quinlivan B T, Lee S, et al. Comparison of the human-exosuitinteraction using ankle moment and ankle positive power inspired walkingassistance[J]. Journal of biomechanics, 2019, 83: 76-84.
[27] Grimmer M, Quinlivan B T, Lee S, et al. Comparison of the human-exosuitinteraction using ankle moment and ankle positive power inspired walkingassistance[J]. Journal of biomechanics, 2019, 83: 76-84.
[28] Park Y L, Chen B, Pérez-Arancibia N O, et al. Design and control of a bio-inspiredsoft wearable robotic device for ankle–foot rehabilitation[J]. Bioinspiration &biomimetics, 2014, 9(1): 016007.
[29] Schmidt K, Duarte J E, Grimmer M, et al. The myosuit: Bi-articular anti-gravityexosuit that reduces hip extensor activity in sitting transfers[J]. Frontiers inneurorobotics, 2017, 11: 57.
[30] John S W, Murakami K, Komatsu M, et al. Cross-wire assist suit concept, for mobileand lightweight multiple degree of freedom hip assistance[C]//2017 InternationalConference on Rehabilitation Robotics (ICORR). IEEE, 2017: 387-393.
[31] Murakami K, John S W, Komatsu M, et al. External control of walking direction,using cross-wire mobile assist suit[C]//2017 IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS). IEEE, 2017: 1046-1051.
[32] Jin S, Guo S, Hashimoto K, et al. Effects of a soft wearable robotic suit on metaboliccost and gait characteristics in healthy young subjects[C]//2017 17th InternationalConference on Control, Automation and Systems (ICCAS). IEEE, 2017: 680-684.
[33] Jin S, Iwamoto N, Hashimoto K, et al. Experimental evaluation of energy efficiencyfor a soft wearable robotic suit[J]. IEEE Transactions on Neural Systems andRehabilitation Engineering, 2016, 25(8): 1192-1201.
[34] Zelik K E, Kuo A D. Human walking isn't all hard work: evidence of soft tissuecontributions to energy dissipation and return[J]. Journal of Experimental Biology,2010, 213(24): 4257-4264.
[35] Kuo A D. Harvesting energy by improving the economy of human walking[J].Science, 2005, 309(5741): 1686-1687.
[36] Donelan J M, Kram R, Kuo A D. Simultaneous positive and negative externalmechanical work in human walking[J]. Journal of biomechanics, 2002, 35(1): 117-124.
[37] Donelan J M, Kram R, Kuo A D. Mechanical work for step-to-step transitions is amajor determinant of the metabolic cost of human walking[J]. Journal ofExperimental Biology, 2002, 205(23): 3717-3727.
[38] Zachazewski J E, Riley P O, Krebs D E. Biomechanical analysis of body masstransfer during stair ascent and descent of healthy subjects[J]. Journal ofrehabilitation research and development, 1993, 30: 412-412.
[39] Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations forRehabilitation[M]. London: Mosby, 2010.
[40] 郑进忠. 踝关节柔性外骨骼设计与控制研究[D].哈尔滨工业大学,2018: 48-53.
[41] 张佳帆. 基于柔性外骨骼人机智能系统基础理论及应用技术研究[D].浙江大学,2009: 22-23.
[42] 王东海. 基于行走步态的被动式重力支撑柔性下肢外骨骼系统[D].浙江大学,2016: 38-43.
[43] 万诗龙. 可穿戴下肢柔性外骨骼助力系统设计[D].东南大学,2017: 18-23.
[44] Andriacchi T P, Andersson G B, Fermier R W, et al. A study of lower-limbmechanics during stair-climbing[J]. The Journal of bone and joint surgery. Americanvolume, 1980, 62(5): 749-757.
[45] Moniz-Pereira V, Kepple T M, Cabral S, et al. Joint moments’ contributions tovertically accelerate the center of mass during stair ambulation in the elderly: Aninduced acceleration approach[J]. Journal of biomechanics, 2018, 79: 105-111.
[46] Protopapadaki A, Drechsler W I, Cramp M C, et al. Hip, knee, ankle kinematics andkinetics during stair ascent and descent in healthy young individuals[J]. Clinicalbiomechanics, 2007, 22(2): 203-210.
[47] Wilken J M, Sinitski E H, Bagg E A. The role of lower extremity joint powers insuccessful stair ambulation[J]. Gait & posture, 2011, 34(1): 142-144.
[48] Lay A N, Hass C J, Gregor R J. The effects of sloped surfaces on locomotion: akinematic and kinetic analysis[J]. Journal of biomechanics, 2006, 39(9): 1621-1628.
[49] Galle S, Malcolm P, Derave W, et al. Uphill walking with a simple exoskeleton:Plantarflexion assistance leads to proximal adaptations[J]. Gait & posture, 2015,41(1): 246-251.
[50] 张莹莹. 基于足底压力的外骨骼康复训练模型的研究[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2018: 42-44.
[51] 刘笃信. 下肢外骨骼机器人多模融合控制策略研究[D].中国科学院大学(中国科学院深圳先进技术研究院),2018: 58-62.
[52] 姚健. 基于足底压力测量的步态识别与预测[D].西南交通大学,2017: 12-13.
[53] 孙传金. 基于 STM32 的 CANopen 协议栈的实现[D].山东大学,2018: 50-53.
[54] 邵黎君. 基于 CAN 总线的仿人机器人关节控制系统研究[D].清华大学,2004:14-15.
[55] Farsi M, Ratcliff K. CANopen: the open communications solution[C]//ISIE'97Proceeding of the IEEE International Symposium on Industrial Electronics. IEEE,1997, 1: 112-116.
[56] 苏康友,刘荣贵,王佳颖.基于 STM32F103 的数据采集系统设计[J].信息与电脑(理论版),2018(21):74-75+78.
[57] 黄健,张善文,周端.基于 STM32 的 A/D 采样软件滤波改进算法研究[J].仪表技术与传感器,2016(03):83-85.
[58] 雷杰宇. 人体运动数据采集与分析[D].浙江大学,2015: 18-23.
[59] 刘幸奇. 基于运动捕捉数据的人体运动合成[D].北京交通大学,2010: 42-43.
[60] 韩树洋. 人体关节生物力学实验及仿真研究[D].中国矿业大学,2014: 35-36
修改评论