中文版 | English
题名

面向日常出行的助老柔性外骨骼系统设计

其他题名
DESIGN OF A SOFT EXOSUIT FOR ASSISTING DAILY WALKING OF THE ELDERLY
姓名
姓名拼音
HUANG Guan
学号
11749087
学位类型
硕士
学位专业
080201 机械制造及其自动化
学科门类/专业学位类别
08 工学
导师
付成龙
导师单位
机械与能源工程系
论文答辩日期
2019-06
论文提交日期
2022-10-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

老年人肌肉动力不足,造成行走能力降低,日常出行不便。 柔性外骨骼能主动
助力并且具有重量轻、与人体相容性好等优点, 适合辅助老年人行走。 但现有柔性
外骨骼未能实现辅助老年人日常出行,原因包括: 现有柔性外骨骼大多数仅针对平
地行走进行助力, 不适合多行走环境的日常出行; 需要在人体绑缚大量绑带, 穿戴
复杂, 老年人难以接受; 驱动装置重,不适合老年人日常携带等。 如何改进柔性外
骨骼的结构设计,研制出轻便高效的驱动装置, 并设计适合不同行走环境的助力控
制方法, 使柔性外骨骼能够应用于多行走环境的日常出行助力, 是柔性外骨骼领域
亟需解决的问题。
本论文来源于国家自然科学基金项目:辅助老年行走的内穿型柔性助力外骨
骼。 本论文的目标是设计面向老年人日常出行的助力柔性外骨骼系统。 论文主要研
究工作如下:
(1) 设计了一款可助力平地行走、上楼及上坡三种日常行走环境的柔性外骨
骼。 分析了三种日常行走环境下人体下肢生物力学参数, 基于三种日常行走环境下
踝关节功率的相似性, 提出了通过助力踝关节来辅助日常多环境行走的方法。 无论
是平地行走还是上楼、 上坡,踝关节蹬地功在下肢关节总功中占比均较大, 特别是
平地行走及上坡时,其占比达到 40%以上。 由于日常行走环境下平地行走及上坡
出现几率较大, 因此通过助力踝关节来助力日常行走的总收益最高。
(2) 在穿戴结构及驱动装置的设计上进行了改进,使其适合老年人使用。 设
计了与鞋集成的踝关节助力柔性外骨骼穿戴结构。 穿戴部分完全集成在鞋上,无需
在人体上绑缚零部件,降低了穿戴复杂性, 老年人更有可能接受。 设计了轻量化的
便携式柔性外骨骼驱动装置。 利用单个电机的正反转同时助力左、右腿运动,减少
了所需的电机和控制器数量, 驱动装置重量仅为 2.45Kg(不含电源),比已知的其
他踝关节助力柔性外骨骼都更轻。
(3) 使用基于力的位置控制方法,控制柔性外骨骼产生所需辅助功率。 通过
柔性外骨骼的刚度模型可以将柔性外骨骼的目标输出力转换为电机位移, 这样就
能够将复杂的力控制问题转变为简单的电机位移控制。
基于以上研究进行了三种日常行走环境下的助力效果对比实验, 对比 3 种日
常行走环境下柔性外骨骼助力前后小腿肌肉激活度的变化情况。 初步的实验结果
证明了所设计柔性外骨骼能降低三种日常行走环境对踝关节肌肉发力的需求。
 

其他摘要

Due to decrease of muscle power, the elderly lose some walking ability, leading to
inconvenient daily walking. Soft exosuits are suitable for assisting the elderly walking,
because they are light and compatible to human. But for some reasons, soft exosuits are
still unable to facilitate daily walking of the elderly. First, most existing soft exosuits
assist level walking only, incapable of assisting daily walking with multiple walking
environments. Second, previous exosuits add too many straps to human body, which may
not be accepted by the elderly. Third, actuators of previous exosuits are heavy, not suitable
for daily use. In order to adapt the soft exosuit to assist daily walking, it is urgent to
improve the design of exosuit, reduce the weight of actuator and find a control method
capable of assisting different walking environments.
This paper comes from an NSFC: an in-wear exosuit for assisting the elderly walking.
The paper aims to develop a soft exouist for assisting daily walking of the elderly.
The main research work of the paper is as follows:
(1) Analysis of lower limbs biomechanics for multiple walking environments was
performed. Whatever it is level walking, stair walking or slope walking, ankle push-off
work holds a big proportion of COM work, especially during level walking, ankle pushoff work accounts for more than 50% of total COM work. Considering the probability of
level walking is biggest in daily walking, assisting ankle joint will benefit most.
(2) A soft exosuit totally integrated to shoe was designed. The wear parts of proposed
exosuit were completely integrated to shoe, with no other part add to human body, which
may reduce the wearing complexity and increase acceptability of the elderly. A light
portable actuator was designed. The actuator utilized positive and negative rotation of one
motor to actuate bilateral legs, in this way the number of required motor and control
devices is reduced. The weight of actuator is only 2.45Kg, lighter than any other ankle
assistant soft exosuits we known.
(4) A force-based position control was performed to generate required assistant
power. The force-based position control transforms the complicated force control problem
to a simple position control of the motor by the means of exosuit stiff model.
Based on the above researches, experiments in three different walking environments
were performed to compare the assisting effect of proposed exosuit. Preliminary results
demonstrated the effectiveness of proposed exosuit to reduce the requirement of ankle
muscle activations.
 

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2019-07
参考文献列表

[1] Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strengthof major muscle groups related to age, body mass, height, and sex in 178 healthysubjects[J]. European journal of applied physiology, 2012, 112(1): 267-275.
[2] Bohannon R W. Reference values for extremity muscle strength obtained by handheld dynamometry from adults aged 20 to 79 years[J]. Archives of physicalmedicine and rehabilitation, 1997, 78(1): 26-32.
[3] Fugl-Meyer A R, Gustafsson L, Burstedt Y. Isokinetic and static plantar flexioncharacteristics[J]. European journal of applied physiology and occupationalphysiology, 1980, 45(2-3): 221-234.
[4] Masmoudi K, Aouicha M S, Fki H, et al. The six minute walk test: which predictivevalues to apply for Tunisian subjects aged between 40 and 80 years?[J]. La Tunisiemedicale, 2008, 86(1): 20-26.
[5] Tudor-Locke C, Bassett D R. How many steps/day are enough?[J]. Sports medicine,2004, 34(1): 1-8.
[6] Asbeck A T, Dyer R J, Larusson A F, et al. Biologically-inspired softexosuit[C]//2013 IEEE 13th International Conference on Rehabilitation Robotics(ICORR). IEEE, 2013: 1-8.
[7] Wehner M, Quinlivan B, Aubin P M, et al. A lightweight soft exosuit for gaitassistance[C]//2013 IEEE International Conference on Robotics and Automation.IEEE, 2013: 3362-3369.
[8] Asbeck A T, De Rossi S M M, Holt K G, et al. A biologically inspired soft exosuitfor walking assistance[J]. The International Journal of Robotics Research, 2015,34(6): 744-762.
[9] Ding Y, Galiana I, Siviy C, et al. IMU-based iterative control for hip extensionassistance with a soft exosuit[C]//2016 IEEE International Conference on Roboticsand Automation (ICRA). IEEE, 2016: 3501-3508.
[10] Ding Y, Panizzolo F A, Siviy C, et al. Effect of timing of hip extension assistanceduring loaded walking with a soft exosuit[J]. Journal of neuroengineering andrehabilitation, 2016, 13(1): 87.
[11] Lee S, Crea S, Malcolm P, et al. Controlling negative and positive power at the anklewith a soft exosuit[C]//2016 IEEE International Conference on Robotics andAutomation (ICRA). IEEE, 2016: 3509-3515.
[12] Panizzolo F A, Galiana I, Asbeck A T, et al. A biologically-inspired multi-joint softexosuit that can reduce the energy cost of loaded walking[J]. Journal ofneuroengineering and rehabilitation, 2016, 13(1): 43.
[13] Awad L N, Bae J, Kudzia P, et al. Reducing circumduction and hip hiking duringhemiparetic walking through targeted assistance of the paretic limb using a softrobotic exosuit[J]. American journal of physical medicine & rehabilitation, 2017,96(10): S157-S164.
[14] Awad L N, Bae J, O’Donnell K, et al. A soft robotic exosuit improves walking inpatients after stroke[J]. Science translational medicine, 2017, 9(400): eaai9084.
[15] Ding Y, Galiana I, Asbeck A T, et al. Biomechanical and physiological evaluation ofmulti-joint assistance with soft exosuits[J]. IEEE Transactions on Neural Systemsand Rehabilitation Engineering, 2016, 25(2): 119-130.
[16] Lee G, Kim J, Panizzolo F A, et al. Reducing the metabolic cost of running with atethered soft exosuit[J]. Sci. Robot., 2017, 2(6): eaan6708.
[17] Malcolm P, Lee S, Crea S, et al. Varying negative work assistance at the ankle witha soft exosuit during loaded walking[J]. Journal of neuroengineering andrehabilitation, 2017, 14(1): 62.
[18] Malcolm P, Rossi D M, Siviy C, et al. Continuous sweep versus discrete stepprotocols for studying effects of wearable robot assistance magnitude[J]. Journal ofneuroengineering and rehabilitation, 2017, 14(1): 72.
[19] Quinlivan B T, Lee S, Malcolm P, et al. Assistance magnitude versus metabolic costreductions for a tethered multiarticular soft exosuit[J]. Sci Robot, 2017, 2(2): 4416.
[20] Yandell M B, Quinlivan B T, Popov D, et al. Physical interface dynamics alter howrobotic exosuits augment human movement: implications for optimizing wearableassistive devices[J]. Journal of neuroengineering and rehabilitation, 2017, 14(1): 40.
[21] Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuitfor paretic ankle assistance in walking after stroke[C]//2018 IEEE InternationalConference on Robotics and Automation (ICRA). IEEE, 2018: 2820-2827.
[22] Ding Y, Kim M, Kuindersma S, et al. Human-in-the-loop optimization of hipassistance with a soft exosuit during walking[J]. Sci. Robot., 2018, 3(15): eaar5438.
[23] Kim J, Heimgartner R, Lee G, et al. Autonomous and portable soft exosuit for hipextension assistance with online walking and running detection algorithm[C]//2018IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018:1-8.
[24] Lee S, Karavas N, Quinlivan B T, et al. Autonomous multi-joint soft exosuit forassistance with walking Overground[C]//2018 IEEE International Conference onRobotics and Automation (ICRA). IEEE, 2018: 2812-2819.
[25] Lee S, Kim J, Baker L, et al. Autonomous multi-joint soft exosuit withaugmentation-power-based control parameter tuning reduces energy cost of loadedwalking[J]. Journal of neuroengineering and rehabilitation, 2018, 15(1): 66.
[26] Grimmer M, Quinlivan B T, Lee S, et al. Comparison of the human-exosuitinteraction using ankle moment and ankle positive power inspired walkingassistance[J]. Journal of biomechanics, 2019, 83: 76-84.
[27] Grimmer M, Quinlivan B T, Lee S, et al. Comparison of the human-exosuitinteraction using ankle moment and ankle positive power inspired walkingassistance[J]. Journal of biomechanics, 2019, 83: 76-84.
[28] Park Y L, Chen B, Pérez-Arancibia N O, et al. Design and control of a bio-inspiredsoft wearable robotic device for ankle–foot rehabilitation[J]. Bioinspiration &biomimetics, 2014, 9(1): 016007.
[29] Schmidt K, Duarte J E, Grimmer M, et al. The myosuit: Bi-articular anti-gravityexosuit that reduces hip extensor activity in sitting transfers[J]. Frontiers inneurorobotics, 2017, 11: 57.
[30] John S W, Murakami K, Komatsu M, et al. Cross-wire assist suit concept, for mobileand lightweight multiple degree of freedom hip assistance[C]//2017 InternationalConference on Rehabilitation Robotics (ICORR). IEEE, 2017: 387-393.
[31] Murakami K, John S W, Komatsu M, et al. External control of walking direction,using cross-wire mobile assist suit[C]//2017 IEEE/RSJ International Conference onIntelligent Robots and Systems (IROS). IEEE, 2017: 1046-1051.
[32] Jin S, Guo S, Hashimoto K, et al. Effects of a soft wearable robotic suit on metaboliccost and gait characteristics in healthy young subjects[C]//2017 17th InternationalConference on Control, Automation and Systems (ICCAS). IEEE, 2017: 680-684.
[33] Jin S, Iwamoto N, Hashimoto K, et al. Experimental evaluation of energy efficiencyfor a soft wearable robotic suit[J]. IEEE Transactions on Neural Systems andRehabilitation Engineering, 2016, 25(8): 1192-1201.
[34] Zelik K E, Kuo A D. Human walking isn't all hard work: evidence of soft tissuecontributions to energy dissipation and return[J]. Journal of Experimental Biology,2010, 213(24): 4257-4264.
[35] Kuo A D. Harvesting energy by improving the economy of human walking[J].Science, 2005, 309(5741): 1686-1687.
[36] Donelan J M, Kram R, Kuo A D. Simultaneous positive and negative externalmechanical work in human walking[J]. Journal of biomechanics, 2002, 35(1): 117-124.
[37] Donelan J M, Kram R, Kuo A D. Mechanical work for step-to-step transitions is amajor determinant of the metabolic cost of human walking[J]. Journal ofExperimental Biology, 2002, 205(23): 3717-3727.
[38] Zachazewski J E, Riley P O, Krebs D E. Biomechanical analysis of body masstransfer during stair ascent and descent of healthy subjects[J]. Journal ofrehabilitation research and development, 1993, 30: 412-412.
[39] Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations forRehabilitation[M]. London: Mosby, 2010.
[40] 郑进忠. 踝关节柔性外骨骼设计与控制研究[D].哈尔滨工业大学,2018: 48-53.
[41] 张佳帆. 基于柔性外骨骼人机智能系统基础理论及应用技术研究[D].浙江大学,2009: 22-23.
[42] 王东海. 基于行走步态的被动式重力支撑柔性下肢外骨骼系统[D].浙江大学,2016: 38-43.
[43] 万诗龙. 可穿戴下肢柔性外骨骼助力系统设计[D].东南大学,2017: 18-23.
[44] Andriacchi T P, Andersson G B, Fermier R W, et al. A study of lower-limbmechanics during stair-climbing[J]. The Journal of bone and joint surgery. Americanvolume, 1980, 62(5): 749-757.
[45] Moniz-Pereira V, Kepple T M, Cabral S, et al. Joint moments’ contributions tovertically accelerate the center of mass during stair ambulation in the elderly: Aninduced acceleration approach[J]. Journal of biomechanics, 2018, 79: 105-111.
[46] Protopapadaki A, Drechsler W I, Cramp M C, et al. Hip, knee, ankle kinematics andkinetics during stair ascent and descent in healthy young individuals[J]. Clinicalbiomechanics, 2007, 22(2): 203-210.
[47] Wilken J M, Sinitski E H, Bagg E A. The role of lower extremity joint powers insuccessful stair ambulation[J]. Gait & posture, 2011, 34(1): 142-144.
[48] Lay A N, Hass C J, Gregor R J. The effects of sloped surfaces on locomotion: akinematic and kinetic analysis[J]. Journal of biomechanics, 2006, 39(9): 1621-1628.
[49] Galle S, Malcolm P, Derave W, et al. Uphill walking with a simple exoskeleton:Plantarflexion assistance leads to proximal adaptations[J]. Gait & posture, 2015,41(1): 246-251.
[50] 张莹莹. 基于足底压力的外骨骼康复训练模型的研究[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2018: 42-44.
[51] 刘笃信. 下肢外骨骼机器人多模融合控制策略研究[D].中国科学院大学(中国科学院深圳先进技术研究院),2018: 58-62.
[52] 姚健. 基于足底压力测量的步态识别与预测[D].西南交通大学,2017: 12-13.
[53] 孙传金. 基于 STM32 的 CANopen 协议栈的实现[D].山东大学,2018: 50-53.
[54] 邵黎君. 基于 CAN 总线的仿人机器人关节控制系统研究[D].清华大学,2004:14-15.
[55] Farsi M, Ratcliff K. CANopen: the open communications solution[C]//ISIE'97Proceeding of the IEEE International Symposium on Industrial Electronics. IEEE,1997, 1: 112-116.
[56] 苏康友,刘荣贵,王佳颖.基于 STM32F103 的数据采集系统设计[J].信息与电脑(理论版),2018(21):74-75+78.
[57] 黄健,张善文,周端.基于 STM32 的 A/D 采样软件滤波改进算法研究[J].仪表技术与传感器,2016(03):83-85.
[58] 雷杰宇. 人体运动数据采集与分析[D].浙江大学,2015: 18-23.
[59] 刘幸奇. 基于运动捕捉数据的人体运动合成[D].北京交通大学,2010: 42-43.
[60] 韩树洋. 人体关节生物力学实验及仿真研究[D].中国矿业大学,2014: 35-36

所在学位评定分委会
机械与能源工程系
国内图书分类号
TP242.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406043
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
黄冠. 面向日常出行的助老柔性外骨骼系统设计[D]. 哈尔滨. 哈尔滨工业大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749087-黄冠-机械与能源工程系(5715KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄冠]的文章
百度学术
百度学术中相似的文章
[黄冠]的文章
必应学术
必应学术中相似的文章
[黄冠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。