中文版 | English
题名

消防用感应控温维生呼吸器

其他题名
A TEMPERATURE-CONTROLLED RESPIRATORY DEVICE FOR FIRE-FIHTING
姓名
姓名拼音
XIAO Jie
学号
11749174
学位类型
硕士
学位专业
085601 材料工程
学科门类/专业学位类别
0856 材料与化工
导师
祝渊
导师单位
深港微电子学院
外机构导师
周绍鑫
论文答辩日期
2019-05
论文提交日期
2022-10-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

为了综合解决火灾中因吸入性损伤造成的人身伤亡问题,本文设计了一种新型的消防用感应控温维生呼吸器,通过呼吸器中配置的一种基于新型高热导复合相变材料的空气换热器,可以将火场中500K的高温空气降低至313K,
且控温时间大于20mins,为综合有效地预防吸入性损伤提供了一种新的解决方
案。本文的主要研究内容和成果如下:
(1)通过熔融共混法制备了石蜡/膨胀石墨复合相变材料,XRD和FT-IR的结果表明了石蜡和膨胀石墨之间没有发生化学反应,两者之间只存在物理吸附
作用。DSC结果表明,PW/EG复合相变材料相对基体相变材料PW,其熔点和凝固点略有改变,熔点会降低,凝固点会升高,即EG的加入,会减小相变材料的过冷度。PW/EG复合相变材料的热导率随EG含量的增加而增大,但潜热则会逐渐减小,当EG的含量增大到35wt%时,其径向热导率达到了28.8 (W/m·K),较纯石蜡0.2 (W/m·K)提升了约144倍。
(2)建立了空气换热器的流热耦合数学模型,其数值分析结果表明,本文设计的换热器能有效地将500K的高温空气瞬时降低至目标温度313K以下。研究了相变材料热物性参数对换热器控温时间(出口温度<313K的时间)的影响,得到了较佳的材料热物性参数,即当热导率为10 (W/m·K),潜热为180 (J/g)时,换热器的控温时间最长,可达1379s。对相变蓄热片的形状进行了初步优化,综合考虑换热器的压降和控温性能后,相变蓄热圆片的数量为8片,厚度为8mm时,是换热器的较佳结构选择。
(3)利用kriging拟合模型建立的相变蓄热片几何尺寸,包括孔到中心的距离d1,孔与孔之间的距离d2,孔的直径大小D,以及相邻蓄热片的夹角α与换热器压降��,t=1200s时刻的出口温度Toutlet,相变材料质量Mpcm的响应关系,并利用遗传算法对换热器进行了多目标优化,得到了最佳换热器几何设计。当
D=9.94mm,α=49.88°,d1=15.72mm,d2=15.04mm时,换热器压降下降了约52.8%,质量减少了20.1g,t=1200s时出口温度上升了2.62℃,但仍满足T<313 K的设计要求。
(4)设计了一个新型的消防用控温维生呼吸器,将呼吸器设计成三大部分,i)紧凑式可拆卸的分离式换热器;ii)吸气通道与呼吸通道隔离的呼吸结构;iii)易于佩戴的紧贴式头罩。

其他摘要

In order to solve the problem of human casualties caused by inhalation damage in fire comprehensively, a new type of temperature-controlled respiratory for Fire-fighting is designed in this paper. Through a new type of air heat exchangerbased on high thermal conductivity composite phase change material, which is equipped with respiratory, the high temperature air of 500 K in fire field can be reduced to 313 K,and the time of temperature control below 313K for outlet can reach more than20 minutes. It provides a new comprehensively and effectively solution to solve inhalationinjury. The main research contents and results are as follows:
(1)The paraffin/expanded graphite composite phase change materials were prepared by melting blending method. There are no chemical reaction between paraffin and expanded graphite, and no new phase and substance formation in the composite phase change materials compared with the matrix materials; Comparing to paraffin, the melting point of PW/EG decreases andthe solidification point increase;The thermal conductivity of PW/EG increases with the increase of EG content,while the latent heat would decrease. When the content of EG increases to 35 wt%, its radial thermal conductivity reaches 28.8 (W/m·K), which is 144 times than pure paraffin (0.2 (W/m·K)).
(2)The mathematical model of Flow-Thermal coupled for air heat exchanger is established. The numerical analysis results showthat the heat exchanger designed in this paper can effectively reduce the high temperature air of 500K to below the target temperature of 313K. The influence of thermo-physical parameters of phase change materials on the temperature control time of heat exchanger (time of outlet temperature < 313K) is studied, and the better thermo-physicalparameters of materials are obtained, when the thermal conductivity K is 10 (W/m·K), the latent heat H is 180 (J/g), the heat exchanger has the longest time of temperature control,reaching 1379 seconds. The shape of the phase change panels was optimized preliminarily. Considering the pressure drop and temperature control time of the heat exchanger, when thethickness ofphase changepanelsis 8mm,the numbers of panels is 8,it is a better choice for the heat exchanger.
(3)The responserelationship between the geometric dimensions of the he at exchanger and thepressure drop of heat exchanger, the exit temperature at t=1200s,the mass of PCM panels was created using Kriging model, including the distance between holes and center (d1) the distance between holes (d2), t he diameter of holes (D), and the angle betweenadjacent PCM panels; Using
the Multi-Objective Genetic Algorithm, we obtained the optimal geometry of heat exchanger, the pressure drop decreased by 52.8%,the mass of panels decr eased by 20.1g,and the outlet temperature increased by2.62℃when flow t imeat1200s(it still met the design requirements of Tt=1200s<313K)when the geometry size of PCM panels is D=9.94mm,α=49.88°,d1=15.72mm,d2=15.04 mm.
(4)A novelFire-fighting respiratory device was designed. The respirator is made by three major parts:i) acompact detachable separated heat exchanger, ii) breathing structure of isolation between breathing passage and breathing passage; iii)a compact thermal insulated head cover which is easy to wear.

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2019-07
参考文献列表

[1] 公安部办公室. 2015 年全国火灾情况分析[Internet]. http://www.119.gov.cn/xiaofang/nbnj/34149.htm.
[2] 公安部办公室. 2016 年全国火灾情况分析[Internet]. http://www.119.gov.cn/xiaofang/hztj/34602.htm.
[3] 公安部办公室. 2017 年全国火灾情况分析[Internet]. http://www.119.gov.cn/xiaofang/nbnj/36054.htm.
[4] Haynes HJG. Fire Loss in the United States During 2016 [Internet].www.nfpa.research.
[5] Brandt-Rauf P W, Fallon L F, Tarantini T, et al. Health hazards of fire fighters:exposure assessment[J]. Occupational and Environmental Medicine, 1988,45(9): 606-612.
[6] Jankovic J, Jones W, Burkhart J, et al. Environmental study of firefighters[J].The Annals of occupational hygiene, 1991, 35(6): 581-602.
[7] Bolstad-Johnson D M, Burgess J L, Crutchfield C D, et al. Characterization offirefighter exposures during fire overhaul[J]. AIHAJ-American IndustrialHygiene Association, 2000, 61(5): 636-641.
[8] Tepper A, Comstock G W, Levine M. A longitudinal study of pulmonaryfunction in fire fighters[J]. American journal of industrial medicine, 1991, 20(3):307-316.
[9] Mustajbegovic J, Zuskin E, Schachter E N, et al. Respiratory function in activefirefighters[J]. American journal of industrial medicine, 2001, 40(1): 55-62.
[10] Bates M N. Registry‐ based case – control study of cancer in Californiafirefighters[J]. American journal of industrial medicine, 2007, 50(5): 339-344.
[11] Hooper A J, Crawford J O, Thomas D. An evaluation of physiological demandsand comfort between the use of conventional and lightweight self-containedbreathing apparatus[J]. Applied ergonomics, 2001, 32(4): 399-406.
[12] 马勉军, 霍红庆, 张小青. 月面载荷被动热控技术[J]. 中国空间科学技术,2010, 30: 64-68.
[13] 祝起凡, 段军, 杨芳红. 某电子设备热控系统的设计[J]. 电子科技, 2016,29(8):28-30.
[14] Wang T, Tseng K J, Zhao J, et al. Thermal investigation of lithium-ion batterymodule with different cell arrangement structures and forced air-coolingstrategies[J]. Applied energy, 2014, 134: 229-238.
[15] Xu X M, He R. Research on the heat dissipation performance of battery packbased on forced air cooling[J]. Journal of Power Sources, 2013, 240: 33-41.
[16] Choi Y S, Kang D M. Prediction of thermal behaviors of an air-cooled lithiumion battery system for hybrid electric vehicles[J]. Journal of Power Sources,2014, 270: 273-280.
[17] Park H. A design of air flow configuration for cooling lithium ion battery inhybrid electric vehicles[J]. Journal of power sources, 2013, 239: 30-36.
[18] Liu Z, Wang Y, Zhang J, et al. Shortcut computation for the thermalmanagement of a large air-cooled battery pack[J]. Applied Thermal Engineering,2014, 66(1-2): 445-452.
[19] Tong W, Somasundaram K, Birgersson E, et al. Numerical investigation ofwater cooling for a lithium-ion bipolar battery pack[J]. International Journal ofThermal Sciences, 2015, 94: 259-269.
[20] Zhao J, Rao Z, Li Y. Thermal performance of mini-channel liquid cooledcylinder based battery thermal management for cylindrical lithium-ion powerbattery[J]. Energy conversion and management, 2015, 103: 157-165.
[21] Bandhauer T M, Garimella S. Passive, internal thermal management system forbatteries using microscale liquid–vapor phase change[J]. Applied ThermalEngineering, 2013, 61(2): 756-769.
[22] Huo Y, Rao Z. The numerical investigation of nanofluid based cylinder batterythermal management using lattice Boltzmann method[J]. International Journalof Heat and Mass Transfer, 2015, 91: 374-384.
[23] Wei Z, Zhao J, Xiong B. Dynamic electro-thermal modeling of all-vanadiumredox flow battery with forced cooling strategies[J]. Applied energy, 2014, 135:1-10.
[24] Zhao J, Rao Z, Liu C, et al. Experimental investigation on thermal performanceof phase change material coupled with closed-loop oscillating heat pipe(PCM/CLOHP) used in thermal management[J]. Applied Thermal Engineering,2016, 93: 90-100.
[25] Tran T H, Harmand S, Desmet B, et al. Experimental investigation on thefeasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. AppliedThermal Engineering, 2014, 63(2): 551-558.
[26] Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal managementsystem with wet cooling method for lithium ion batteries[J]. Power Sources2015;273:1089–97.
[27] Greco A, Jiang X, Cao D. An investigation of lithium-ion battery thermalmanagement using paraffin/porous-graphite-matrix composite[J].Power Sources 2015;278:50–68.
[28] Javani N, Dincer I, Naterer G F, et al. Heat transfer and thermal managementwith PCMs in a Li-ion battery cell for electric vehicles[J]. International Journalof Heat and Mass Transfer, 2014, 72: 690-703.
[29] Khateeb SA, Amiruddin S, Farid M, Selman JR, Al-Hallaj S. Thermalmanagement of Li-ion battery with phase change material for electric scooters:experimental validation[J]. Power Sources 2005;142:345–53.
[30] Kizilel R, Sabbah R, Selman JR, Al-Hallaj S. An alternative cooling system toenhance the safety of Li-ion battery packs[J]. Power Sources 2009;194:1105–12.
[31] Ling Z, Chen J, Fang X, et al. Experimental and numerical investigation of theapplication of phase change materials in a simulative power batteries thermalmanagement system[J]. Applied energy, 2014, 121: 104-113.
[32] Wang T, Tseng K J, Zhao J. Development of efficient air-cooling strategies forlithium-ion battery module based on empirical heat source model[J]. AppliedThermal Engineering, 2015, 90: 521-529.
[33] Jin L W, Lee P S, Kong X X, et al. Ultra-thin minichannel LCP for EV batterythermal management[J]. Applied energy, 2014, 113: 1786-1794.
[34] Lin C, Xu S, Chang G, et al. Experiment and simulation of a LiFePO4 batterypack with a passive thermal management system using composite phase changematerial and graphite sheets[J]. Journal of Power Sources, 2015, 275:742-749.
[35] Li WQ, Qu ZG, He YL, Tao YB. Experimental study of a passive thermalmanagement system for high-powered lithium ion batteries using porous metalfoam saturated with phase change materials[J]. Power Sources 2014;255:9–15.
[36] Rao Z, Wang Q, Huang C. Investigation of the thermal performance of phasechange material/mini-channel coupled battery thermal management system[J].Applied energy, 2016, 164: 659-669.
[37] Sun X, Zhang Q, Medina M A, et al. Performance of a free-air cooling systemfor telecommunications base stations using phase change materials (PCMs): insitu tests[J]. Applied energy, 2015, 147: 325-334.
[38] Xue N, Du W, Greszler T A, et al. Design of a lithium-ion battery pack forPHEV using a hybrid optimization method[J]. Applied Energy, 2014, 115: 591-602.
[39] 何天白, 胡汉杰. 功能高分子与新材料[M].北京:化学工业出版社, 2001. 78.
[40] 张寅平, 胡汉平, 孔祥冬. 相变贮能⎯理论和应用[M]. 合肥:中国科学技术大学出版社, 1996. 51
[41] Kandasamy R , Wang X Q , Mujumdar A S . Application of phase changematerials in thermal management of electronics[J]. Applied ThermalEngineering, 2007, 27(17-18):2822-2832.
[42] Estes R C . The effect of thermal capacitance and phase change on outside plantelectronic enclosures[C]. IEEE Semiconductor Thermal Measurement &Management Symposium. IEEE, 1992.
[43] Al-Hallaj A, Selman JR. A novel thermal management system for electricvehicle batteries using phase-change material[J]. Electrochem Soc 2000;147(9):3231–6.
[44] Rao Z, Wang S, Zhang G. Simulation and experiment of thermal energymanagement with phase change material for ageing LiFePO4 power battery[J].Energy Convers Manage 2011;52:3408–14.
[45] Wang Z, Zhang Z, Jia L, Yang L. Paraffin and paraffin/aluminum foamcomposite phase change material heat storage experimental study based onthermal management of Li-ion battery[J]. Appl Therm Eng 2015;78:428–36.
[46] 李传洪, 张振华, 车仁智. 我国煤矿自救器的现状与未来[J]. 煤矿安全,1998(4):34-38.
[47] GA-209-1999, 消防自救呼吸器[S]. 中国标准出版社,1999.
[48] GB21976.7-2012, 建筑火灾逃生避难器材第 7 部分:过滤式消防自救呼吸器[S].中国标准出版社,2012.
[49] Hughes, R. J. Price, K. McCrory, D. Courson, B. Rudolph, J. Breathing gastemperature modification device[P]. US Patents: 1998; Vol. US5761909A.
[50] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase changeenergy storage: materials and applications[J]. Energy Convers Manage2004:1597–615.
[51] Liu M, Saman W, Bruno F. Review on storage materials and thermalperformance enhancement techniques for high temperature phase changethermal storage systems[J]. Renew Sust Energy Rev 2012;16:2118–32.
[52] Abhat A. Low temperature latent heat thermal energy storage: heat storagematerials[J]. Solar energy, 1983, 30(4): 313-332.
[53] Herrmann U, Kearney D W. Survey of thermal energy storage for parabolictrough power plants[J]. Journal of solar energy engineering, 2002, 124(2): 145-152.
[54] Naumann R, Emons HH. Results of thermal analysis for investigation of salthydrates as latent heat-storage materials[J].Therm Anal Calorim 1989;35:1009–31.
[55] Paris J, Falardeau M, Villeneuve C. Thermal storage by latent heat: a viableoption for energy conservation in buildings[J]. Energy Sources 1993;15:85–93.
[56] Nagano K, Mochida T, Takeda S, Domanski R, Rebow M. Thermalcharacteristics of manganese (II) nitrate hexahydrate as a phase change materialfor cooling systems[J]. Appl Therm Eng 2003;23:229–41.
[57] Bilen K, Takgil F, Kaygusuz K. Thermal energy storage behavior ofCaCl26H2O during melting and solidification[J]. Energy Sources Part A2008;30:775–87.
[58] Tyagi VV, Buddhi D. Thermal cycle testing of calcium chloride hexahydrate asa possible PCM for latent heat storage[J]. Sol Energy Mater Sol Cells2008;92:891–9.
[59] Cabeza LF, Svensson G, Hiebler S, Mehling H. Thermal performance of sodiumacetate trihydrate thickened with different materials as phase change energystorage material[J]. Appl Therm Eng 2003;23:1697–704.
[60] Belton G, Ajami F. Thermochemistry of salt hydrates[R]. Pennsylvania Univ.,Philadelphia (USA). Towne School of Civil and Mechanical Engineering, 1973.
[61] Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art[J]. RenewSust Energy Rev 2007;11:1146–66.
[62] Pielichowska K , Pielichowski K . Phase change materials for thermal energystorage[J]. Progress in Materials Science, 2014, 65:67-123.
[63] Bugaje I M. Enhancing the thermal response of latent heat storage systems[J].International Journal of Energy Research, 2015, 21(9):759-766.
[64] Mancin S, Diani A, Doretti L, Hooman K, Rossetto L. Experimental analysis ofphase change phenomenon of paraffin waxes embedded in copper foams[J]. IntJ Therm Sci 2015;90:79–89.
[65] Mettawee E B S , Assassa G M R . Thermal conductivity enhancement in a latentheat storage system[J]. Solar Energy, 2007, 81(7):839-845.
[66] 吴淑英. 纳米复合蓄热材料强化相变传热实验与数值模拟研究[D]. 2010.
[67] Hamada Y, Otsu W, Fukai J, Morozumi Y, Miyatake O. Anisotropic heattransfer in composites based on high-thermal conductive carbon fibers[J].Energy 2005;30:221–33.
[68] Elgafy A , Lafdi K . Effect of carbon nanofiber additives on thermal behaviorof phase change materials[J]. Carbon, 2005, 43(15):3067-3074.
[69] Wang J, Xie H, Xin Z, Li Y, Chen L. Enhancing thermal conductivity of palmiticacid based phase change materials with carbon nanotubes as fillers[J]. SolEnergy 2010;84:339–44.
[70] Li TX, Lee J-H, Wang RZ, Kang YT. Enhancement of heat transfer for thermalenergy storage application using stearic acid nanocomposite with multi-walledcarbon nanotubes[J]. Energy 2013;55:752–61.
[71] 郭美茹, 周文, 周天,等. 石墨烯/石蜡复合材料的热物理性能研究[J]. 工程热物理学报, 2014, 35(6):1200-1205.
[72] Warzoha R J , Fleischer A S . Improved heat recovery from paraffin-based phasechange materials due to the presence of percolating graphene networks[J].International Journal of Heat and Mass Transfer, 2014, 79:314-323.
[73] GOLI P, LEGEDZA S, DHAR A, et al.Graphene-enhanced hybrid phase changematerials for thermal management of Li-ion batteries[J]. Journal of PowerSources, 2014, 248(7):37-43.
[74] Zhang P , Xiao X , Ma Z W . A review of the composite phase change materials:Fabrication, characterization, mathematical modeling and application toperformance enhancement[J]. Applied Energy, 2016, 165:472-510.
[75] Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a highand constant power thermal storage material[J]. International Journal of Heat &Mass Transfer, 2001, 44(14):2727-2737.
[76] Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phasechange materials and graphite for thermal storage[J]. Solar Energy Materials &Solar Cells, 2008, 92(6):603-613.
[77] 胡小冬, 高学农, 李得伦,等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10):3831-3837.
[78] 李邦硕, 杜鸿达, 张元元,等. 原位聚合树脂提高膨胀石墨/石蜡热导率的研究[J]. 炭素技术, 2017(4):35-38.
[79] Karaipekli A, Sari A. Capric–myristic acid/expanded perlite composite as form–stable phase change material for latent heat thermal energy storage[J]. RenewEnergy 2008;33:2599–605.
[80] Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability ofcapric acid/expanded perlite composite for thermal energy storage[J]. MaterChem Phys 2008;109:459–64.
[81] Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomitecomposite as a novel form–stable phase change material for thermal energystorage[J]. Sol Energy Mater Sol Cells 2011;95:1647–53.
[82] Zhou M, Lin T, Huang F, Zhong Y, Wang Z, Tang Y, et al. Highly conductiveporous graphene/ceramic composites for heat transfer and thermal energystorage[J]. Adv Funct Mater 2013;23:2263–9.
[83] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCM thermalenergy storage system[J]. Applied Energy, 2003, 74(1):195-202.
[84] Ozonur Y, Mazman M, Paksoy HO, Evliya H. Microencapsulation of coco fattyacid mixture for thermal energy storage with phase change material[J]. Int JEnergy Res 2006;30:741–9.
[85] 黄全国, 杨文彬, 张凯等. 聚苯乙烯/石蜡相变储能微胶囊的制备和表征[J].功能材料, 2014(13):13131-13134.
[86] 王轩, 朱金华. 芯材表面修饰法制备聚脲石蜡相变微胶囊及其表征[J]. 高分子材料科学与工程, 2014, 30(1):131-135.
[87] 张正国, 邵刚, 方晓明. 石蜡/膨胀石墨复合相变储热材料的研究[J]. 太阳能学报, 2005, 26(5):98-102.
[88] 华建社, 张娇, 张焱等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12):61-64.
[89] Sari A. Form–stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation andthermal properties[J]. Energy Convers Manage 2004;45:2033–42.
[90] Ye H, Ge X. Preparation of Polyethylene-Paraffin Compound as aForm-stableSolid-Liquid Phase Change Material [J]. Sol. EnergyMater. Sol. C, 2000, 64(1):37-44.
[91] 秦鹏华, 杨睿, 张寅平等. 定形相变材料的热性能[J]. 清华大学学报(自然科学版), 2003, 43(6):833-835.
[92] 刘菁伟, 杨文彬, 田本强等. 石蜡/高密度聚乙烯/膨胀石墨导热增强型复合相变材料热导率的影响因素[J]. 高分子材料科学与工程, 2015, 31(5):83-86.
[93] Akgun M, Aydın O, Kaygusuz K. Experimental study on melting/solidificationcharacteristics of a paraffin as PCM[J]. Energy Convers Manage 2007;48:669–78.
[94] ASTM-E1461. Standard Test Method for Thermal Diffusivity by the FlashMethod[S]. American Society of Testing Materials,2011.
[95] 袁铁柱, 王江飞. 大空间火灾温度场分布研究[C].第十一届全国现代结构工程学术研讨会.
[96] 庄淑梅, 王春梅. 氧疗湿化液温度对呼吸系统疾病病人氧疗舒适度和效果影响[J].护理研究
[97] Kampmann B, Piekarski C. The evaluation of workplaces subjected to heatstress: can ISO 7933 (1989) adequately describe heat strain in industrialworkplaces[J]. Applied Ergonomics, 2000, 31(1):59-71.;
[98] Hawk P B , Oser B L , Summerson W H , et al. Practical PhysiologicalChemistry[J]. British Medical Journal, 1913, 1(2714):27-28.
[99] Xu W U . Analysing Fire Growth Factor' s Effect on Fire Oxygen Concentrationin the Ship Engine Room[J]. Journal of China Maritime Police Academy, 2012.
[100]陶文铨. 数值传热学-第 2 版[M]. 西安交通大学出版社, 2001.
[101]Lamberg P . Approximate analytical model for two-phase solidification problemin a finned phase-change material storage[J]. Applied Energy, 2004, 77(2):131-152.
[102]Assis E , Katsman L , Ziskind G , et al. Numerical and experimental study ofmelting in a spherical shell[J]. International Journal of Heat and Mass Transfer,2007, 50(9-10):1790-1804.
[103]Alawadhi E M , Amon C H . PCM thermal control unit for portable electronicdevices: experimental and numerical studies[J]. IEEE Transactions onComponents and Packaging Technologies, 2003, 26(1):116-125.
[104]Purlis E , Salvadori V O . Bread baking as a moving boundary problem. Part 1:Mathematical modelling[J]. Journal of Food Engineering, 2009, 91(3):428-433.
[105]Lee G J, Rhee C K. Enhanced Thermal Conductivity of Nanofluids ContainingGraphene Nanoplatelets Prepared by Ultrasound Irradiation[J]. Journal ofMaterials Science, 2013, 49(4): 1506-1511.
[106]Radhakrishnan R , Gubbins K E . Free energy studies of freezing in slit pores:an order-parameter approach using Monte Carlo simulation[J]. MolecularPhysics, 1999, 96(8):1249-1267.
[107]Radhakrishnan R , Gubbins K E , Watanabe A , et al. Freezing of simple fluidsin microporous activated carbon fibers: Comparison of simulation andexperiment[J]. The Journal of Chemical Physics, 1999, 111(19):9058-9067.
[108]Zhao Y J, Wang R Z, Wang L W, et al. Development of highly conductiveKNO3/NaNO3 composite for TES (thermal energy storage)[J]. Energy, 2014,70: 272-277.
[109]Ling Z , Chen J , Xu T , et al. Thermal conductivity of an organic phase changematerial/expanded graphite composite across the phase change temperaturerange and a novel thermal conductivity model[J]. Energy Conversion andManagement, 2015, 102:202-208.
[110]Skaria S D, Smaldone G C. Respiratory source control using surgical masks withnanofiber media[J]. Annals of occupational hygiene, 2014, 58(6): 771-781.
[111]Forrester D A I J, Sóbester D A, Keane A J. Engineering Design via SurrogateModelling: A Practical Guide[M]. 2008.
[112]Giunta A A, Vladimir B, Dan H, et al. Multidisciplinary Optimization of aSupersonic Transport Using Design of Experiments Theory and ResponseSurface Modeling[J]. Aeronautical J, 1997, 101.

所在学位评定分委会
创新创业学院
国内图书分类号
TB34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406070
专题创新创业学院
推荐引用方式
GB/T 7714
肖杰. 消防用感应控温维生呼吸器[D]. 哈尔滨. 哈尔滨工业大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749174-肖杰-创新创业学院.p(5360KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[肖杰]的文章
百度学术
百度学术中相似的文章
[肖杰]的文章
必应学术
必应学术中相似的文章
[肖杰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。