[1] 公安部办公室. 2015 年全国火灾情况分析[Internet]. http://www.119.gov.cn/xiaofang/nbnj/34149.htm.
[2] 公安部办公室. 2016 年全国火灾情况分析[Internet]. http://www.119.gov.cn/xiaofang/hztj/34602.htm.
[3] 公安部办公室. 2017 年全国火灾情况分析[Internet]. http://www.119.gov.cn/xiaofang/nbnj/36054.htm.
[4] Haynes HJG. Fire Loss in the United States During 2016 [Internet].www.nfpa.research.
[5] Brandt-Rauf P W, Fallon L F, Tarantini T, et al. Health hazards of fire fighters:exposure assessment[J]. Occupational and Environmental Medicine, 1988,45(9): 606-612.
[6] Jankovic J, Jones W, Burkhart J, et al. Environmental study of firefighters[J].The Annals of occupational hygiene, 1991, 35(6): 581-602.
[7] Bolstad-Johnson D M, Burgess J L, Crutchfield C D, et al. Characterization offirefighter exposures during fire overhaul[J]. AIHAJ-American IndustrialHygiene Association, 2000, 61(5): 636-641.
[8] Tepper A, Comstock G W, Levine M. A longitudinal study of pulmonaryfunction in fire fighters[J]. American journal of industrial medicine, 1991, 20(3):307-316.
[9] Mustajbegovic J, Zuskin E, Schachter E N, et al. Respiratory function in activefirefighters[J]. American journal of industrial medicine, 2001, 40(1): 55-62.
[10] Bates M N. Registry‐ based case – control study of cancer in Californiafirefighters[J]. American journal of industrial medicine, 2007, 50(5): 339-344.
[11] Hooper A J, Crawford J O, Thomas D. An evaluation of physiological demandsand comfort between the use of conventional and lightweight self-containedbreathing apparatus[J]. Applied ergonomics, 2001, 32(4): 399-406.
[12] 马勉军, 霍红庆, 张小青. 月面载荷被动热控技术[J]. 中国空间科学技术,2010, 30: 64-68.
[13] 祝起凡, 段军, 杨芳红. 某电子设备热控系统的设计[J]. 电子科技, 2016,29(8):28-30.
[14] Wang T, Tseng K J, Zhao J, et al. Thermal investigation of lithium-ion batterymodule with different cell arrangement structures and forced air-coolingstrategies[J]. Applied energy, 2014, 134: 229-238.
[15] Xu X M, He R. Research on the heat dissipation performance of battery packbased on forced air cooling[J]. Journal of Power Sources, 2013, 240: 33-41.
[16] Choi Y S, Kang D M. Prediction of thermal behaviors of an air-cooled lithiumion battery system for hybrid electric vehicles[J]. Journal of Power Sources,2014, 270: 273-280.
[17] Park H. A design of air flow configuration for cooling lithium ion battery inhybrid electric vehicles[J]. Journal of power sources, 2013, 239: 30-36.
[18] Liu Z, Wang Y, Zhang J, et al. Shortcut computation for the thermalmanagement of a large air-cooled battery pack[J]. Applied Thermal Engineering,2014, 66(1-2): 445-452.
[19] Tong W, Somasundaram K, Birgersson E, et al. Numerical investigation ofwater cooling for a lithium-ion bipolar battery pack[J]. International Journal ofThermal Sciences, 2015, 94: 259-269.
[20] Zhao J, Rao Z, Li Y. Thermal performance of mini-channel liquid cooledcylinder based battery thermal management for cylindrical lithium-ion powerbattery[J]. Energy conversion and management, 2015, 103: 157-165.
[21] Bandhauer T M, Garimella S. Passive, internal thermal management system forbatteries using microscale liquid–vapor phase change[J]. Applied ThermalEngineering, 2013, 61(2): 756-769.
[22] Huo Y, Rao Z. The numerical investigation of nanofluid based cylinder batterythermal management using lattice Boltzmann method[J]. International Journalof Heat and Mass Transfer, 2015, 91: 374-384.
[23] Wei Z, Zhao J, Xiong B. Dynamic electro-thermal modeling of all-vanadiumredox flow battery with forced cooling strategies[J]. Applied energy, 2014, 135:1-10.
[24] Zhao J, Rao Z, Liu C, et al. Experimental investigation on thermal performanceof phase change material coupled with closed-loop oscillating heat pipe(PCM/CLOHP) used in thermal management[J]. Applied Thermal Engineering,2016, 93: 90-100.
[25] Tran T H, Harmand S, Desmet B, et al. Experimental investigation on thefeasibility of heat pipe cooling for HEV/EV lithium-ion battery[J]. AppliedThermal Engineering, 2014, 63(2): 551-558.
[26] Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal managementsystem with wet cooling method for lithium ion batteries[J]. Power Sources2015;273:1089–97.
[27] Greco A, Jiang X, Cao D. An investigation of lithium-ion battery thermalmanagement using paraffin/porous-graphite-matrix composite[J].Power Sources 2015;278:50–68.
[28] Javani N, Dincer I, Naterer G F, et al. Heat transfer and thermal managementwith PCMs in a Li-ion battery cell for electric vehicles[J]. International Journalof Heat and Mass Transfer, 2014, 72: 690-703.
[29] Khateeb SA, Amiruddin S, Farid M, Selman JR, Al-Hallaj S. Thermalmanagement of Li-ion battery with phase change material for electric scooters:experimental validation[J]. Power Sources 2005;142:345–53.
[30] Kizilel R, Sabbah R, Selman JR, Al-Hallaj S. An alternative cooling system toenhance the safety of Li-ion battery packs[J]. Power Sources 2009;194:1105–12.
[31] Ling Z, Chen J, Fang X, et al. Experimental and numerical investigation of theapplication of phase change materials in a simulative power batteries thermalmanagement system[J]. Applied energy, 2014, 121: 104-113.
[32] Wang T, Tseng K J, Zhao J. Development of efficient air-cooling strategies forlithium-ion battery module based on empirical heat source model[J]. AppliedThermal Engineering, 2015, 90: 521-529.
[33] Jin L W, Lee P S, Kong X X, et al. Ultra-thin minichannel LCP for EV batterythermal management[J]. Applied energy, 2014, 113: 1786-1794.
[34] Lin C, Xu S, Chang G, et al. Experiment and simulation of a LiFePO4 batterypack with a passive thermal management system using composite phase changematerial and graphite sheets[J]. Journal of Power Sources, 2015, 275:742-749.
[35] Li WQ, Qu ZG, He YL, Tao YB. Experimental study of a passive thermalmanagement system for high-powered lithium ion batteries using porous metalfoam saturated with phase change materials[J]. Power Sources 2014;255:9–15.
[36] Rao Z, Wang Q, Huang C. Investigation of the thermal performance of phasechange material/mini-channel coupled battery thermal management system[J].Applied energy, 2016, 164: 659-669.
[37] Sun X, Zhang Q, Medina M A, et al. Performance of a free-air cooling systemfor telecommunications base stations using phase change materials (PCMs): insitu tests[J]. Applied energy, 2015, 147: 325-334.
[38] Xue N, Du W, Greszler T A, et al. Design of a lithium-ion battery pack forPHEV using a hybrid optimization method[J]. Applied Energy, 2014, 115: 591-602.
[39] 何天白, 胡汉杰. 功能高分子与新材料[M].北京:化学工业出版社, 2001. 78.
[40] 张寅平, 胡汉平, 孔祥冬. 相变贮能⎯理论和应用[M]. 合肥:中国科学技术大学出版社, 1996. 51
[41] Kandasamy R , Wang X Q , Mujumdar A S . Application of phase changematerials in thermal management of electronics[J]. Applied ThermalEngineering, 2007, 27(17-18):2822-2832.
[42] Estes R C . The effect of thermal capacitance and phase change on outside plantelectronic enclosures[C]. IEEE Semiconductor Thermal Measurement &Management Symposium. IEEE, 1992.
[43] Al-Hallaj A, Selman JR. A novel thermal management system for electricvehicle batteries using phase-change material[J]. Electrochem Soc 2000;147(9):3231–6.
[44] Rao Z, Wang S, Zhang G. Simulation and experiment of thermal energymanagement with phase change material for ageing LiFePO4 power battery[J].Energy Convers Manage 2011;52:3408–14.
[45] Wang Z, Zhang Z, Jia L, Yang L. Paraffin and paraffin/aluminum foamcomposite phase change material heat storage experimental study based onthermal management of Li-ion battery[J]. Appl Therm Eng 2015;78:428–36.
[46] 李传洪, 张振华, 车仁智. 我国煤矿自救器的现状与未来[J]. 煤矿安全,1998(4):34-38.
[47] GA-209-1999, 消防自救呼吸器[S]. 中国标准出版社,1999.
[48] GB21976.7-2012, 建筑火灾逃生避难器材第 7 部分:过滤式消防自救呼吸器[S].中国标准出版社,2012.
[49] Hughes, R. J. Price, K. McCrory, D. Courson, B. Rudolph, J. Breathing gastemperature modification device[P]. US Patents: 1998; Vol. US5761909A.
[50] Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase changeenergy storage: materials and applications[J]. Energy Convers Manage2004:1597–615.
[51] Liu M, Saman W, Bruno F. Review on storage materials and thermalperformance enhancement techniques for high temperature phase changethermal storage systems[J]. Renew Sust Energy Rev 2012;16:2118–32.
[52] Abhat A. Low temperature latent heat thermal energy storage: heat storagematerials[J]. Solar energy, 1983, 30(4): 313-332.
[53] Herrmann U, Kearney D W. Survey of thermal energy storage for parabolictrough power plants[J]. Journal of solar energy engineering, 2002, 124(2): 145-152.
[54] Naumann R, Emons HH. Results of thermal analysis for investigation of salthydrates as latent heat-storage materials[J].Therm Anal Calorim 1989;35:1009–31.
[55] Paris J, Falardeau M, Villeneuve C. Thermal storage by latent heat: a viableoption for energy conservation in buildings[J]. Energy Sources 1993;15:85–93.
[56] Nagano K, Mochida T, Takeda S, Domanski R, Rebow M. Thermalcharacteristics of manganese (II) nitrate hexahydrate as a phase change materialfor cooling systems[J]. Appl Therm Eng 2003;23:229–41.
[57] Bilen K, Takgil F, Kaygusuz K. Thermal energy storage behavior ofCaCl26H2O during melting and solidification[J]. Energy Sources Part A2008;30:775–87.
[58] Tyagi VV, Buddhi D. Thermal cycle testing of calcium chloride hexahydrate asa possible PCM for latent heat storage[J]. Sol Energy Mater Sol Cells2008;92:891–9.
[59] Cabeza LF, Svensson G, Hiebler S, Mehling H. Thermal performance of sodiumacetate trihydrate thickened with different materials as phase change energystorage material[J]. Appl Therm Eng 2003;23:1697–704.
[60] Belton G, Ajami F. Thermochemistry of salt hydrates[R]. Pennsylvania Univ.,Philadelphia (USA). Towne School of Civil and Mechanical Engineering, 1973.
[61] Tyagi VV, Buddhi D. PCM thermal storage in buildings: a state of art[J]. RenewSust Energy Rev 2007;11:1146–66.
[62] Pielichowska K , Pielichowski K . Phase change materials for thermal energystorage[J]. Progress in Materials Science, 2014, 65:67-123.
[63] Bugaje I M. Enhancing the thermal response of latent heat storage systems[J].International Journal of Energy Research, 2015, 21(9):759-766.
[64] Mancin S, Diani A, Doretti L, Hooman K, Rossetto L. Experimental analysis ofphase change phenomenon of paraffin waxes embedded in copper foams[J]. IntJ Therm Sci 2015;90:79–89.
[65] Mettawee E B S , Assassa G M R . Thermal conductivity enhancement in a latentheat storage system[J]. Solar Energy, 2007, 81(7):839-845.
[66] 吴淑英. 纳米复合蓄热材料强化相变传热实验与数值模拟研究[D]. 2010.
[67] Hamada Y, Otsu W, Fukai J, Morozumi Y, Miyatake O. Anisotropic heattransfer in composites based on high-thermal conductive carbon fibers[J].Energy 2005;30:221–33.
[68] Elgafy A , Lafdi K . Effect of carbon nanofiber additives on thermal behaviorof phase change materials[J]. Carbon, 2005, 43(15):3067-3074.
[69] Wang J, Xie H, Xin Z, Li Y, Chen L. Enhancing thermal conductivity of palmiticacid based phase change materials with carbon nanotubes as fillers[J]. SolEnergy 2010;84:339–44.
[70] Li TX, Lee J-H, Wang RZ, Kang YT. Enhancement of heat transfer for thermalenergy storage application using stearic acid nanocomposite with multi-walledcarbon nanotubes[J]. Energy 2013;55:752–61.
[71] 郭美茹, 周文, 周天,等. 石墨烯/石蜡复合材料的热物理性能研究[J]. 工程热物理学报, 2014, 35(6):1200-1205.
[72] Warzoha R J , Fleischer A S . Improved heat recovery from paraffin-based phasechange materials due to the presence of percolating graphene networks[J].International Journal of Heat and Mass Transfer, 2014, 79:314-323.
[73] GOLI P, LEGEDZA S, DHAR A, et al.Graphene-enhanced hybrid phase changematerials for thermal management of Li-ion batteries[J]. Journal of PowerSources, 2014, 248(7):37-43.
[74] Zhang P , Xiao X , Ma Z W . A review of the composite phase change materials:Fabrication, characterization, mathematical modeling and application toperformance enhancement[J]. Applied Energy, 2016, 165:472-510.
[75] Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a highand constant power thermal storage material[J]. International Journal of Heat &Mass Transfer, 2001, 44(14):2727-2737.
[76] Pincemin S, Olives R, Py X, et al. Highly conductive composites made of phasechange materials and graphite for thermal storage[J]. Solar Energy Materials &Solar Cells, 2008, 92(6):603-613.
[77] 胡小冬, 高学农, 李得伦,等. 石蜡/膨胀石墨定形相变材料的性能[J]. 化工学报, 2013, 64(10):3831-3837.
[78] 李邦硕, 杜鸿达, 张元元,等. 原位聚合树脂提高膨胀石墨/石蜡热导率的研究[J]. 炭素技术, 2017(4):35-38.
[79] Karaipekli A, Sari A. Capric–myristic acid/expanded perlite composite as form–stable phase change material for latent heat thermal energy storage[J]. RenewEnergy 2008;33:2599–605.
[80] Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability ofcapric acid/expanded perlite composite for thermal energy storage[J]. MaterChem Phys 2008;109:459–64.
[81] Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomitecomposite as a novel form–stable phase change material for thermal energystorage[J]. Sol Energy Mater Sol Cells 2011;95:1647–53.
[82] Zhou M, Lin T, Huang F, Zhong Y, Wang Z, Tang Y, et al. Highly conductiveporous graphene/ceramic composites for heat transfer and thermal energystorage[J]. Adv Funct Mater 2013;23:2263–9.
[83] Hawlader M N A, Uddin M S, Khin M M. Microencapsulated PCM thermalenergy storage system[J]. Applied Energy, 2003, 74(1):195-202.
[84] Ozonur Y, Mazman M, Paksoy HO, Evliya H. Microencapsulation of coco fattyacid mixture for thermal energy storage with phase change material[J]. Int JEnergy Res 2006;30:741–9.
[85] 黄全国, 杨文彬, 张凯等. 聚苯乙烯/石蜡相变储能微胶囊的制备和表征[J].功能材料, 2014(13):13131-13134.
[86] 王轩, 朱金华. 芯材表面修饰法制备聚脲石蜡相变微胶囊及其表征[J]. 高分子材料科学与工程, 2014, 30(1):131-135.
[87] 张正国, 邵刚, 方晓明. 石蜡/膨胀石墨复合相变储热材料的研究[J]. 太阳能学报, 2005, 26(5):98-102.
[88] 华建社, 张娇, 张焱等. 膨胀石墨/石蜡复合相变蓄热材料的热性能及定形性研究[J]. 材料导报, 2016, 30(12):61-64.
[89] Sari A. Form–stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation andthermal properties[J]. Energy Convers Manage 2004;45:2033–42.
[90] Ye H, Ge X. Preparation of Polyethylene-Paraffin Compound as aForm-stableSolid-Liquid Phase Change Material [J]. Sol. EnergyMater. Sol. C, 2000, 64(1):37-44.
[91] 秦鹏华, 杨睿, 张寅平等. 定形相变材料的热性能[J]. 清华大学学报(自然科学版), 2003, 43(6):833-835.
[92] 刘菁伟, 杨文彬, 田本强等. 石蜡/高密度聚乙烯/膨胀石墨导热增强型复合相变材料热导率的影响因素[J]. 高分子材料科学与工程, 2015, 31(5):83-86.
[93] Akgun M, Aydın O, Kaygusuz K. Experimental study on melting/solidificationcharacteristics of a paraffin as PCM[J]. Energy Convers Manage 2007;48:669–78.
[94] ASTM-E1461. Standard Test Method for Thermal Diffusivity by the FlashMethod[S]. American Society of Testing Materials,2011.
[95] 袁铁柱, 王江飞. 大空间火灾温度场分布研究[C].第十一届全国现代结构工程学术研讨会.
[96] 庄淑梅, 王春梅. 氧疗湿化液温度对呼吸系统疾病病人氧疗舒适度和效果影响[J].护理研究
[97] Kampmann B, Piekarski C. The evaluation of workplaces subjected to heatstress: can ISO 7933 (1989) adequately describe heat strain in industrialworkplaces[J]. Applied Ergonomics, 2000, 31(1):59-71.;
[98] Hawk P B , Oser B L , Summerson W H , et al. Practical PhysiologicalChemistry[J]. British Medical Journal, 1913, 1(2714):27-28.
[99] Xu W U . Analysing Fire Growth Factor' s Effect on Fire Oxygen Concentrationin the Ship Engine Room[J]. Journal of China Maritime Police Academy, 2012.
[100]陶文铨. 数值传热学-第 2 版[M]. 西安交通大学出版社, 2001.
[101]Lamberg P . Approximate analytical model for two-phase solidification problemin a finned phase-change material storage[J]. Applied Energy, 2004, 77(2):131-152.
[102]Assis E , Katsman L , Ziskind G , et al. Numerical and experimental study ofmelting in a spherical shell[J]. International Journal of Heat and Mass Transfer,2007, 50(9-10):1790-1804.
[103]Alawadhi E M , Amon C H . PCM thermal control unit for portable electronicdevices: experimental and numerical studies[J]. IEEE Transactions onComponents and Packaging Technologies, 2003, 26(1):116-125.
[104]Purlis E , Salvadori V O . Bread baking as a moving boundary problem. Part 1:Mathematical modelling[J]. Journal of Food Engineering, 2009, 91(3):428-433.
[105]Lee G J, Rhee C K. Enhanced Thermal Conductivity of Nanofluids ContainingGraphene Nanoplatelets Prepared by Ultrasound Irradiation[J]. Journal ofMaterials Science, 2013, 49(4): 1506-1511.
[106]Radhakrishnan R , Gubbins K E . Free energy studies of freezing in slit pores:an order-parameter approach using Monte Carlo simulation[J]. MolecularPhysics, 1999, 96(8):1249-1267.
[107]Radhakrishnan R , Gubbins K E , Watanabe A , et al. Freezing of simple fluidsin microporous activated carbon fibers: Comparison of simulation andexperiment[J]. The Journal of Chemical Physics, 1999, 111(19):9058-9067.
[108]Zhao Y J, Wang R Z, Wang L W, et al. Development of highly conductiveKNO3/NaNO3 composite for TES (thermal energy storage)[J]. Energy, 2014,70: 272-277.
[109]Ling Z , Chen J , Xu T , et al. Thermal conductivity of an organic phase changematerial/expanded graphite composite across the phase change temperaturerange and a novel thermal conductivity model[J]. Energy Conversion andManagement, 2015, 102:202-208.
[110]Skaria S D, Smaldone G C. Respiratory source control using surgical masks withnanofiber media[J]. Annals of occupational hygiene, 2014, 58(6): 771-781.
[111]Forrester D A I J, Sóbester D A, Keane A J. Engineering Design via SurrogateModelling: A Practical Guide[M]. 2008.
[112]Giunta A A, Vladimir B, Dan H, et al. Multidisciplinary Optimization of aSupersonic Transport Using Design of Experiments Theory and ResponseSurface Modeling[J]. Aeronautical J, 1997, 101.
修改评论