中文版 | English
题名

气压驱动的自动化蛋白质组学样品前处理 平台的开发

其他题名
DEVELOPMENT OF PRESSURE-BASED AUTOMATED PROTEOMICS SAMPLE PREPARATION SYSTEM
姓名
姓名拼音
WANG Zhikun
学号
11749206
学位类型
硕士
学位专业
085602 化学工程
学科门类/专业学位类别
0856 材料与化工
导师
田瑞军
导师单位
化学系
论文答辩日期
2019-05
论文提交日期
2022-10-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

质谱仪器的快速发展使得基于质谱技术的蛋白质组学研究已经成为蛋白质
高通量定性和定量研究的重要方面。通过质谱鉴定蛋白质需要复杂的样品处理
过程,包括蛋白质提取、还原、烷基化、胰蛋白酶酶解和多肽除盐等过程。复
杂蛋白质的样品处理不仅步骤繁琐且耗时较长; 尤其当样品量较多时,手动处
理样品容易造成样品丢失、样品污染等问题。
本论文设计并制作了一种可以作为蛋白质反应器的微流控器件,并以此微
流控器件为基础开发出气压驱动的自动化蛋白质组学样品前处理平台,实现蛋
白质样品处理的全自动化运行。自主设计的蛋白质反应器成本低廉,降低了样
品处理成本;在气压驱动的自动化样品处理过程中,完成整个样品处理过程只
需约 2 小时,包括 1 小时的酶解时间。使用该自动化平台处理 10 微克 HEK 293T
细胞样品,在 1.4 小时质谱分析中能够鉴定到 4 758 个蛋白;在处理 20 微克
HEK 293T 细胞样品并进行高 pH 值反相分级的 5 个分级中,使用 7 个小时的质
谱分析可以鉴定到 7 557 个蛋白;并且该自动化样品处理平台具有很好的重复
性(单针 HEK 293T 细胞样品 Pearson 相关系数> 0.99,分级 HEK 293T 细胞样
品 Pearson 相关系数> 0.98),且可以用于最低 2 纳克蛋白量的样品处理。在自
动化样品前处理和深度蛋白质组学分析中, 共鉴定出 212 个蛋白激酶,其中包
括 8 种受体酪氨酸激酶。 总之, 该自动化样品前处理平台在蛋白质批量处理和
临床蛋白质组学的应用方面都具有很好的潜力。
 

其他摘要

The rapid development of mass spectrometry instruments has enabled MS-based
proteomics research to become an important aspect of high-throughput identification
and quantification of proteins. There are multiple processing steps in sample
preparation for protein quantification by mass spectrometry, including protein
preconcentration, reduction, alkylation, digestion, and desalting. It is tedious and
time-consuming to process these procedures of numerous complex biological samples,
especially there are large amounts of sample, manual processing of the sample is
likely to cause problems such as sample loss and contamination.
We have built a Pressure-based Auto-Proteome System that enables fully
automated proteomic sample preparation based on pneumatic actuation. The protein
sample preparation step is highly integrated by using a proteomic reactor based on a
microfluidic device of mixed-mode exchange resin packing and C18 membrane. The
self-designed protein reactor is cheap and reduces the cost of sample processing. The
protein samples and reagents are placed in the sample tray of the autosampler. All
protein sample preparation steps are automatically operated by the autosampler and
performed on the microfluidic reactor. It takes only about 2 hours for the sample
preparation, including 1 hours for digestion. Proteomic analysis of 10 μg HEK 293T
cell lysates readily identified 4 758 proteins within 1.4 h LC-MS gradient time, while
7 557 proteins were identified when operate 20 μg HEK 293T cell lysates by fivestep high-pH RP processed and analyzed within only 7 h of LC-MS gradient time.
More importantly, the Auto-Proteome System has good reproducibility (single-shot
analysis Pearson correlation coefficient > 0.99, deep proteome profiling with fivestep high-pH RP fractionation Pearson correlation coefficient > 0.98). The limit of
detection of the Auto-Proteome System was shown to be lower than 2 ng of BSA
protein. Furthermore, the deep proteome profiling it can analysis 212 kinase proteins,
and 8 RTK protein. Overall this proves that the instrument is viable in the pretreatment of proteins. We expect that the Auto-Proteome System can become a
generally applicable sample preparation technology for clinical proteome profiling.
 

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2019-07
参考文献列表

[1] Wilkins M R, Pasquali C, Appel R D, et al. From Proteins to Proteomes: LargeScale Protein Identification by Two-Dimensional Electrophoresis and ArninoAcid Analysis[J]. Nature Biotechnology, 1996, 14(1): 61-65.
[2] James P. Protein Identification in the Post-Genome Era: The Rapid Rise ofProteomics[J]. Quarterly Reviews of Biophysics, 1997, 30(4): 279-331.
[3] Zhang Y, Fonslow B R, Shan B, et al. Protein Analysis by Shotgun/Bottom-upProteomics[J]. Chemical Reviews, 2013, 113(4): 2343-2394.
[4] Zhu H, Bilgin M, Snyder M. Proteomics[J]. Annual Review of Biochemistry,2003, 72: 783-812.
[5] De Hoog C L, Mann M. Proteomics[J]. Annual Review of Genomics and HumanGenetics, 2004, 5: 267-293.
[6] Shishkova E, Hebert A S, Coon J J. Now, More Than Ever, Proteomics NeedsBetter Chromatography[J]. Cell Systems, 2016, 3(4): 321-324.
[7] Mann M. The Rise of Mass Spectrometry and the Fall of Edman Degradation[J].Clinical Chemistry, 2016, 62(1): 293-294.
[8] Domon B, Aebersold R. Mass Spectrometry and Protein Analysis[J]. Science,2006, 312(5771): 212-217.
[9] Fenn J, Mann M, Meng C, et al. Electrospray Ionization for Mass Spectrometryof Large Biomolecules[J]. Science, 1989, 246(4926): 64-71.
[10] Karas M, Hillenkamp F. Laser Desorption Ionization of Proteins with MolecularMasses Exceeding 10,000 Daltons[J]. Analytical Chemistry, 1988, 60(20):2299-2301.
[11] Wilm M, Mann M. Analytical Properties of the Nanoelectrospray Ion Source[J].Analytical Chemistry, 1996, 68(1): 1-8.
[12] Mann M, Wilm M. Error-Tolerant Identification of Peptides in SequenceDatabases by Peptide Sequence Tags[J]. Analytical Chemistry, 1994, 66(24):4390-4399.
[13] Xu G, Stupak J, Yang L, et al. Deconvolution in Mass Spectrometry BasedProteomics[J]. Rapid Commun Mass Spectrom, 2018, 32(10): 763-774.
[14] Riley N M, Hebert A S, Coon J J. Proteomics Moves into the Fast Lane[J]. CellSystems, 2016, 2(3): 142-143.
[15] Pozniak Y, Balint-Lahat N, Rudolph J D, et al. System-Wide Clinical Proteomicsof Breast Cancer Reveals Global Remodeling of Tissue Homeostasis[J]. CellSystems, 2016, 2(3): 172-184.
[16] Aebersold R, Mann M. Mass Spectrometry-Based Proteomics[J]. Nature, 2003,422: 198-207.
[17] Tian R. Exploring Intercellular Signaling by Proteomic Approaches[J].Proteomics, 2014, 14(4-5): 498-512.
[18] Bensimon A, Heck A J R, Aebersold R. Mass Spectrometry–Based Proteomicsand Network Biology[J]. Annual Review of Biochemistry, 2012, 81(1): 379-405.
[19] Choudhary C, Mann M. Decoding Signalling Networks by Mass SpectrometryBased Proteomics[J]. Nature Reviews Molecular Cell Biology, 2010, 11: 427-439.
[20] Rigbolt K T, Blagoev B. Quantitative Phosphoproteomics to CharacterizeSignaling Networks[J]. Seminars in Cell & Developmental Biology, 2012, 23(8):863-871.
[21] McIntosh M, Fitzgibbon M. Biomarker Validation by Targeted MassSpectrometry[J]. Nature Biotechnology, 2009, 27: 622-623.
[22] Kennedy J J, Abbatiello S E, Kim K, et al. Demonstrating the Feasibility ofLarge-Scale Development of Standardized Assays to Quantify HumanProteins[J]. Nature Methods, 2013, 11: 149-155.
[23] Ethier M, Hou W, Duewel H S, et al. The Proteomic Reactor:  A MicrofluidicDevice for Processing Minute Amounts of Protein Prior to Mass SpectrometryAnalysis[J]. Journal of Proteome Research, 2006, 5(10): 2754-2759.
[24] Tian R, Wang S, Elisma F, et al. Rare Cell Proteomic Reactor Applied to StableIsotope Labeling by Amino Acids in Cell Culture (Silac)-Based QuantitativeProteomics Study of Human Embryonic Stem Cell Differentiation[J]. Molecular& Cellular Proteomics, 2011, 10(2): 1-10.
[25] Tian R, Hoa X D, Lambert J P, et al. Development of a Multiplexed MicrofluidicProteomic Reactor and Its Application for Studying Protein–ProteinInteractions[J]. Analytical Chemistry, 2011, 83(11): 4095-4102.
[26] Kulak N A, Pichler G, Paron I, et al. Minimal, Encapsulated Proteomic-SampleProcessing Applied to Copy-Number Estimation in Eukaryotic Cells[J]. NatureMethods, 2014, 11: 319-324.
[27] Chen W, Wang S, Adhikari S, et al. Simple and Integrated Spintip-BasedTechnology Applied for Deep Proteome Profiling[J]. Analytical Chemistry,2016, 88(9): 4864-4871.
[28] Chen W, Adhikari S, Chen L, et al. 3D-SISPROT: A Simple and IntegratedSpintip-Based Protein Digestion and Three-Dimensional Peptide FractionationTechnology for Deep Proteome Profiling[J]. Journal of Chromatography A,2017, 1498: 207-214.
[29] Sun X J, Tang J, Chen W, et al. Integrated Proteomics Sample PretreatmentMethod Based Onscx/Sax Mixed Packing[J]. Scientia Sinica, 2018, 48(2): 188-194.
[30] Xue L, Lin L, Zhou W, et al. Mixed-Mode Ion Exchange-Based IntegratedProteomics Technology for Fast and Deep Plasma Proteome Profiling[J].Journal of Chromatography A, 2018, 1564: 76-84.
[31] Ippoliti P J, Kuhn E, Mani D R, et al. Automated Microchromatography EnablesMultiplexing of Immunoaffinity Enrichment of Peptides to Greater Than 150 forTargeted Ms-Based Assays[J]. Analytical Chemistry, 2016, 88(15): 7548-7555.
[32] Zhao Y, Liu G, Zambito F C, et al. A Multiplexed Immunocapture LiquidChromatography Tandem Mass Spectrometry Assay for the SimultaneousMeasurement of Myostatin and GDF-11 in Rat Serum Using an AutomatedSample Preparation Platform[J]. Analytica Chimica Acta, 2017, 979: 36-44.
[33] Zhu M, Zhang P, Geng-Spyropoulos M, et al. A Robotic Protocol for HighThroughput Processing of Samples for Selected Reaction Monitoring Assays[J].Proteomics, 2017, 17(6): 1-5.
[34] Fu Q, Kowalski M P, Mastali M, et al. Highly Reproducible AutomatedProteomics Sample Preparation Workflow for Quantitative MassSpectrometry[J]. Journal of Proteome Research, 2018, 17(1): 420-428.
[35] Kuras M, Betancourt L H, Rezeli M, et al. Assessing Automated SamplePreparation Technologies for High-Throughput Proteomics of Frozen WellCharacterized Tissues from Swedish Biobanks[J]. Journal of Proteome Research,2019, 18: 548−556.
[36] Clark D J, Hu Y, Schnaubelt M, et al. Simple Tip-Based Sample ProcessingMethod for Urinary Proteomic Analysis[J]. Analytical Chemistry, 2019, 91(9):5517-5522.
[37] Tian R, Alvarez-Saavedra M, Cheng H Y M, et al. Uncovering the ProteomeResponse of the Master Circadian Clock to Light Using an AutoproteomeSystem[J]. Molecular & Cellular Proteomics, 2011, 10(11): 1-16.
[38] Pandey A, Mann M. Proteomics to Study Genes and Genomes[J]. Nature, 2000,405: 837-846.
[39] 田尉婧, 张九凯, 程海燕. 基于质谱的蛋白质组学技术在食品真伪鉴别及品质识别方面的应用[J]. 色谱, 2018, 36(07): 588-598.
[40] Wolters D A, Washburn M P, Yates J R. An Automated Multidimensional ProteinIdentification Technology for Shotgun Proteomics[J]. Analytical Chemistry,2001, 73(23): 5683-5690.
[41] Yates J R. Mass Spectral Analysis in Proteomics[J]. Annual Review ofBiophysics & Biomolecular Structure, 2004, 33: 297-316.
[42] Han X, Jin M, Breuker K, et al. Extending Top-Down Mass Spectrometry toProteins with Masses Greater Than 200 Kilodaltons[J]. Science, 2006,314(5796): 109-112.
[43] Tran J C, Zamdborg L, Ahlf D R, et al. Mapping Intact Protein Isoforms inDiscovery Mode Using Top-Down Proteomics[J]. Nature, 2011, 480(7376):254-258.
[44] Wu C, Tran J C, Zamdborg L, et al. A Protease for 'Middle-Down' Proteomics[J].Nature Methods, 2012, 9(8): 822-824.
[45] De Godoy L M, Olsen J V, Cox J, et al. Comprehensive Mass-SpectrometryBased Proteome Quantification of Haploid Versus Diploid Yeast[J]. Nature,2008, 455(7217): 1251-1254.
[46] Go E P, Rebecchi K R, Desaire H. In-Solution Digestion of Glycoproteins forGlycopeptide-Based Mass Analysis[J]. Methods in Molecular Biology, 2013,951: 103-111.
[47] Liebler D C, Ham A J. Spin Filter-Based Sample Preparation for ShotgunProteomics[J]. Nature Methods, 2009, 6(11): 785-791.
[48] Wisniewski J R, Zougman A, Nagaraj N, et al. Universal Sample PreparationMethod for Proteome Analysis[J]. Nature Methods, 2009, 6(5): 359-362.
[49] Hughes C S, Foehr S, Garfield D A, et al. Ultrasensitive Proteome AnalysisUsing Paramagnetic Bead Technology[J]. Molecular Systems Biology, 2014, 10:757-770.
[50] Ma J, Zhang L, Liang Z, et al. Immobilized Enzyme Reactors in Proteomics[J].Trac Trends in Analytical Chemistry, 2011, 30(5): 691-702.
[51] Ma J, Liang Z, Qiao X, et al. Organic-Inorganic Hybrid Silica Monolith BasedImmobilized Trypsin Reactor with High Enzymatic Activity[J]. AnalyticalChemistry, 2008, 80(8): 2949-2956.
[52] Cox J, Mann M. Maxquant Enables High Peptide Identification Rates,Individualized P.P.B.-Range Mass Accuracies and Proteome-Wide ProteinQuantification[J]. Nature Biotechnology, 2008, 26: 1367-1372.
[53] Cravatt B F, Simon G M, Yates J R. The Biological Impact of MassSpectrometry-Based Proteomics[J]. Nature, 2007, 450(7172): 991-1000.
[54] Choudhary C, Weinert B T, Nishida Y, et al. The Growing Landscape of LysineAcetylation Links Metabolism and Cell Signalling[J]. Nature ReviewsMolecular Cell Biology, 2014, 15(8): 536-550.
[55] Li X J, Hayward C, Fong P Y, et al. A Blood-Based Proteomic Classifier for theMolecular Characterization of Pulmonary Nodules[J]. Science TranslationalMedicine, 2013, 5(207): 1-10.
[56] Anderson L, Hunter C L. Quantitative Mass Spectrometric Multiple ReactionMonitoring Assays for Major Plasma Proteins[J]. Molecular & CellularProteomics, 2006, 5(4): 573-588.
[57] Malm J, Fehniger T E, Danmyr P, et al. Developments in Biobanking WorkflowStandardization Providing Sample Integrity and Stability[J]. Journal ofProteomics, 2013, 95: 38-45.
[58] Malm J, Lindberg H, Erlinge D, et al. Semi-Automated Biobank SampleProcessing with a 384 High Density Sample Tube Robot Used in Cancer andCardiovascular Studies[J]. Clinical & Translational Medicine, 2015, 4(1): 1-8.
[59] Glimelius B, Melin B, Enblad G, et al. U-CAN: A Prospective LongitudinalCollection of Biomaterials and Clinical Information from Adult Cancer Patientsin Sweden[J]. Acta Oncologica, 2018, 57(2): 187-194.
[60] Ruelcke J E, Loo D, Hill M M. Reducing the Cost of Semi-Automated in-GelTryptic Digestion and Gelc Sample Preparation for High-ThroughputProteomics[J]. Journal of Proteomics, 2016, 149: 3-6.
[61] Rogers J C, Bomgarden R D. Sample Preparation for Mass Spectrometry-BasedProteomics; from Proteomes to Peptides[J]. Advances in Experimental Medicine& Biology, 2016, 919: 43-62.
[62] Nie L, Zhu M, Sun S, et al. An Optimization of the LC-MS/MS Workflow forDeep Proteome Profiling on an Orbitrap Fusion[J]. Analytical Methods, 2016,8(2): 425-434.
[63] Muller L, Fornecker L, Van Dorsselaer A, et al. Benchmarking SamplePreparation/Digestion Protocols Reveals Tube-Gel Being a Fast and RepeatableMethod for Quantitative Proteomics[J]. Proteomics, 2016, 16(23): 2953-2961.
[64] Lin L, Zheng J, Yu Q, et al. High Throughput and Accurate Serum ProteomeProfiling by Integrated Sample Preparation Technology and Single-Run DataIndependent Mass Spectrometry Analysis[J]. Journal of Proteomics, 2018, 174:9-16.
[65] Xu R, Tang J, Deng Q, et al. Spatial-Resolution Cell Type Proteome Profilingof Cancer Tissue by Fully Integrated Proteomics Technology[J]. AnalyticalChemistry, 2018, 90(9): 5879-5886.
[66] Anderson N L, Anderson N G. The Human Plasma Proteome[J]. Molecular &Cellular Proteomics, 2002, 1(11): 845-867.
[67] Manning G, Whyte D B, Martinez R, et al. The Protein Kinase Complement ofthe Human Genome[J]. Science, 2002, 298(5600): 1912-1934.

所在学位评定分委会
化学系
国内图书分类号
O65
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406076
专题理学院_化学系
推荐引用方式
GB/T 7714
王志坤. 气压驱动的自动化蛋白质组学样品前处理 平台的开发[D]. 哈尔滨. 哈尔滨工业大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749206-王志坤-化学系.pdf(2591KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王志坤]的文章
百度学术
百度学术中相似的文章
[王志坤]的文章
必应学术
必应学术中相似的文章
[王志坤]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。