[1] Wilkins M R, Pasquali C, Appel R D, et al. From Proteins to Proteomes: LargeScale Protein Identification by Two-Dimensional Electrophoresis and ArninoAcid Analysis[J]. Nature Biotechnology, 1996, 14(1): 61-65.
[2] James P. Protein Identification in the Post-Genome Era: The Rapid Rise ofProteomics[J]. Quarterly Reviews of Biophysics, 1997, 30(4): 279-331.
[3] Zhang Y, Fonslow B R, Shan B, et al. Protein Analysis by Shotgun/Bottom-upProteomics[J]. Chemical Reviews, 2013, 113(4): 2343-2394.
[4] Zhu H, Bilgin M, Snyder M. Proteomics[J]. Annual Review of Biochemistry,2003, 72: 783-812.
[5] De Hoog C L, Mann M. Proteomics[J]. Annual Review of Genomics and HumanGenetics, 2004, 5: 267-293.
[6] Shishkova E, Hebert A S, Coon J J. Now, More Than Ever, Proteomics NeedsBetter Chromatography[J]. Cell Systems, 2016, 3(4): 321-324.
[7] Mann M. The Rise of Mass Spectrometry and the Fall of Edman Degradation[J].Clinical Chemistry, 2016, 62(1): 293-294.
[8] Domon B, Aebersold R. Mass Spectrometry and Protein Analysis[J]. Science,2006, 312(5771): 212-217.
[9] Fenn J, Mann M, Meng C, et al. Electrospray Ionization for Mass Spectrometryof Large Biomolecules[J]. Science, 1989, 246(4926): 64-71.
[10] Karas M, Hillenkamp F. Laser Desorption Ionization of Proteins with MolecularMasses Exceeding 10,000 Daltons[J]. Analytical Chemistry, 1988, 60(20):2299-2301.
[11] Wilm M, Mann M. Analytical Properties of the Nanoelectrospray Ion Source[J].Analytical Chemistry, 1996, 68(1): 1-8.
[12] Mann M, Wilm M. Error-Tolerant Identification of Peptides in SequenceDatabases by Peptide Sequence Tags[J]. Analytical Chemistry, 1994, 66(24):4390-4399.
[13] Xu G, Stupak J, Yang L, et al. Deconvolution in Mass Spectrometry BasedProteomics[J]. Rapid Commun Mass Spectrom, 2018, 32(10): 763-774.
[14] Riley N M, Hebert A S, Coon J J. Proteomics Moves into the Fast Lane[J]. CellSystems, 2016, 2(3): 142-143.
[15] Pozniak Y, Balint-Lahat N, Rudolph J D, et al. System-Wide Clinical Proteomicsof Breast Cancer Reveals Global Remodeling of Tissue Homeostasis[J]. CellSystems, 2016, 2(3): 172-184.
[16] Aebersold R, Mann M. Mass Spectrometry-Based Proteomics[J]. Nature, 2003,422: 198-207.
[17] Tian R. Exploring Intercellular Signaling by Proteomic Approaches[J].Proteomics, 2014, 14(4-5): 498-512.
[18] Bensimon A, Heck A J R, Aebersold R. Mass Spectrometry–Based Proteomicsand Network Biology[J]. Annual Review of Biochemistry, 2012, 81(1): 379-405.
[19] Choudhary C, Mann M. Decoding Signalling Networks by Mass SpectrometryBased Proteomics[J]. Nature Reviews Molecular Cell Biology, 2010, 11: 427-439.
[20] Rigbolt K T, Blagoev B. Quantitative Phosphoproteomics to CharacterizeSignaling Networks[J]. Seminars in Cell & Developmental Biology, 2012, 23(8):863-871.
[21] McIntosh M, Fitzgibbon M. Biomarker Validation by Targeted MassSpectrometry[J]. Nature Biotechnology, 2009, 27: 622-623.
[22] Kennedy J J, Abbatiello S E, Kim K, et al. Demonstrating the Feasibility ofLarge-Scale Development of Standardized Assays to Quantify HumanProteins[J]. Nature Methods, 2013, 11: 149-155.
[23] Ethier M, Hou W, Duewel H S, et al. The Proteomic Reactor: A MicrofluidicDevice for Processing Minute Amounts of Protein Prior to Mass SpectrometryAnalysis[J]. Journal of Proteome Research, 2006, 5(10): 2754-2759.
[24] Tian R, Wang S, Elisma F, et al. Rare Cell Proteomic Reactor Applied to StableIsotope Labeling by Amino Acids in Cell Culture (Silac)-Based QuantitativeProteomics Study of Human Embryonic Stem Cell Differentiation[J]. Molecular& Cellular Proteomics, 2011, 10(2): 1-10.
[25] Tian R, Hoa X D, Lambert J P, et al. Development of a Multiplexed MicrofluidicProteomic Reactor and Its Application for Studying Protein–ProteinInteractions[J]. Analytical Chemistry, 2011, 83(11): 4095-4102.
[26] Kulak N A, Pichler G, Paron I, et al. Minimal, Encapsulated Proteomic-SampleProcessing Applied to Copy-Number Estimation in Eukaryotic Cells[J]. NatureMethods, 2014, 11: 319-324.
[27] Chen W, Wang S, Adhikari S, et al. Simple and Integrated Spintip-BasedTechnology Applied for Deep Proteome Profiling[J]. Analytical Chemistry,2016, 88(9): 4864-4871.
[28] Chen W, Adhikari S, Chen L, et al. 3D-SISPROT: A Simple and IntegratedSpintip-Based Protein Digestion and Three-Dimensional Peptide FractionationTechnology for Deep Proteome Profiling[J]. Journal of Chromatography A,2017, 1498: 207-214.
[29] Sun X J, Tang J, Chen W, et al. Integrated Proteomics Sample PretreatmentMethod Based Onscx/Sax Mixed Packing[J]. Scientia Sinica, 2018, 48(2): 188-194.
[30] Xue L, Lin L, Zhou W, et al. Mixed-Mode Ion Exchange-Based IntegratedProteomics Technology for Fast and Deep Plasma Proteome Profiling[J].Journal of Chromatography A, 2018, 1564: 76-84.
[31] Ippoliti P J, Kuhn E, Mani D R, et al. Automated Microchromatography EnablesMultiplexing of Immunoaffinity Enrichment of Peptides to Greater Than 150 forTargeted Ms-Based Assays[J]. Analytical Chemistry, 2016, 88(15): 7548-7555.
[32] Zhao Y, Liu G, Zambito F C, et al. A Multiplexed Immunocapture LiquidChromatography Tandem Mass Spectrometry Assay for the SimultaneousMeasurement of Myostatin and GDF-11 in Rat Serum Using an AutomatedSample Preparation Platform[J]. Analytica Chimica Acta, 2017, 979: 36-44.
[33] Zhu M, Zhang P, Geng-Spyropoulos M, et al. A Robotic Protocol for HighThroughput Processing of Samples for Selected Reaction Monitoring Assays[J].Proteomics, 2017, 17(6): 1-5.
[34] Fu Q, Kowalski M P, Mastali M, et al. Highly Reproducible AutomatedProteomics Sample Preparation Workflow for Quantitative MassSpectrometry[J]. Journal of Proteome Research, 2018, 17(1): 420-428.
[35] Kuras M, Betancourt L H, Rezeli M, et al. Assessing Automated SamplePreparation Technologies for High-Throughput Proteomics of Frozen WellCharacterized Tissues from Swedish Biobanks[J]. Journal of Proteome Research,2019, 18: 548−556.
[36] Clark D J, Hu Y, Schnaubelt M, et al. Simple Tip-Based Sample ProcessingMethod for Urinary Proteomic Analysis[J]. Analytical Chemistry, 2019, 91(9):5517-5522.
[37] Tian R, Alvarez-Saavedra M, Cheng H Y M, et al. Uncovering the ProteomeResponse of the Master Circadian Clock to Light Using an AutoproteomeSystem[J]. Molecular & Cellular Proteomics, 2011, 10(11): 1-16.
[38] Pandey A, Mann M. Proteomics to Study Genes and Genomes[J]. Nature, 2000,405: 837-846.
[39] 田尉婧, 张九凯, 程海燕. 基于质谱的蛋白质组学技术在食品真伪鉴别及品质识别方面的应用[J]. 色谱, 2018, 36(07): 588-598.
[40] Wolters D A, Washburn M P, Yates J R. An Automated Multidimensional ProteinIdentification Technology for Shotgun Proteomics[J]. Analytical Chemistry,2001, 73(23): 5683-5690.
[41] Yates J R. Mass Spectral Analysis in Proteomics[J]. Annual Review ofBiophysics & Biomolecular Structure, 2004, 33: 297-316.
[42] Han X, Jin M, Breuker K, et al. Extending Top-Down Mass Spectrometry toProteins with Masses Greater Than 200 Kilodaltons[J]. Science, 2006,314(5796): 109-112.
[43] Tran J C, Zamdborg L, Ahlf D R, et al. Mapping Intact Protein Isoforms inDiscovery Mode Using Top-Down Proteomics[J]. Nature, 2011, 480(7376):254-258.
[44] Wu C, Tran J C, Zamdborg L, et al. A Protease for 'Middle-Down' Proteomics[J].Nature Methods, 2012, 9(8): 822-824.
[45] De Godoy L M, Olsen J V, Cox J, et al. Comprehensive Mass-SpectrometryBased Proteome Quantification of Haploid Versus Diploid Yeast[J]. Nature,2008, 455(7217): 1251-1254.
[46] Go E P, Rebecchi K R, Desaire H. In-Solution Digestion of Glycoproteins forGlycopeptide-Based Mass Analysis[J]. Methods in Molecular Biology, 2013,951: 103-111.
[47] Liebler D C, Ham A J. Spin Filter-Based Sample Preparation for ShotgunProteomics[J]. Nature Methods, 2009, 6(11): 785-791.
[48] Wisniewski J R, Zougman A, Nagaraj N, et al. Universal Sample PreparationMethod for Proteome Analysis[J]. Nature Methods, 2009, 6(5): 359-362.
[49] Hughes C S, Foehr S, Garfield D A, et al. Ultrasensitive Proteome AnalysisUsing Paramagnetic Bead Technology[J]. Molecular Systems Biology, 2014, 10:757-770.
[50] Ma J, Zhang L, Liang Z, et al. Immobilized Enzyme Reactors in Proteomics[J].Trac Trends in Analytical Chemistry, 2011, 30(5): 691-702.
[51] Ma J, Liang Z, Qiao X, et al. Organic-Inorganic Hybrid Silica Monolith BasedImmobilized Trypsin Reactor with High Enzymatic Activity[J]. AnalyticalChemistry, 2008, 80(8): 2949-2956.
[52] Cox J, Mann M. Maxquant Enables High Peptide Identification Rates,Individualized P.P.B.-Range Mass Accuracies and Proteome-Wide ProteinQuantification[J]. Nature Biotechnology, 2008, 26: 1367-1372.
[53] Cravatt B F, Simon G M, Yates J R. The Biological Impact of MassSpectrometry-Based Proteomics[J]. Nature, 2007, 450(7172): 991-1000.
[54] Choudhary C, Weinert B T, Nishida Y, et al. The Growing Landscape of LysineAcetylation Links Metabolism and Cell Signalling[J]. Nature ReviewsMolecular Cell Biology, 2014, 15(8): 536-550.
[55] Li X J, Hayward C, Fong P Y, et al. A Blood-Based Proteomic Classifier for theMolecular Characterization of Pulmonary Nodules[J]. Science TranslationalMedicine, 2013, 5(207): 1-10.
[56] Anderson L, Hunter C L. Quantitative Mass Spectrometric Multiple ReactionMonitoring Assays for Major Plasma Proteins[J]. Molecular & CellularProteomics, 2006, 5(4): 573-588.
[57] Malm J, Fehniger T E, Danmyr P, et al. Developments in Biobanking WorkflowStandardization Providing Sample Integrity and Stability[J]. Journal ofProteomics, 2013, 95: 38-45.
[58] Malm J, Lindberg H, Erlinge D, et al. Semi-Automated Biobank SampleProcessing with a 384 High Density Sample Tube Robot Used in Cancer andCardiovascular Studies[J]. Clinical & Translational Medicine, 2015, 4(1): 1-8.
[59] Glimelius B, Melin B, Enblad G, et al. U-CAN: A Prospective LongitudinalCollection of Biomaterials and Clinical Information from Adult Cancer Patientsin Sweden[J]. Acta Oncologica, 2018, 57(2): 187-194.
[60] Ruelcke J E, Loo D, Hill M M. Reducing the Cost of Semi-Automated in-GelTryptic Digestion and Gelc Sample Preparation for High-ThroughputProteomics[J]. Journal of Proteomics, 2016, 149: 3-6.
[61] Rogers J C, Bomgarden R D. Sample Preparation for Mass Spectrometry-BasedProteomics; from Proteomes to Peptides[J]. Advances in Experimental Medicine& Biology, 2016, 919: 43-62.
[62] Nie L, Zhu M, Sun S, et al. An Optimization of the LC-MS/MS Workflow forDeep Proteome Profiling on an Orbitrap Fusion[J]. Analytical Methods, 2016,8(2): 425-434.
[63] Muller L, Fornecker L, Van Dorsselaer A, et al. Benchmarking SamplePreparation/Digestion Protocols Reveals Tube-Gel Being a Fast and RepeatableMethod for Quantitative Proteomics[J]. Proteomics, 2016, 16(23): 2953-2961.
[64] Lin L, Zheng J, Yu Q, et al. High Throughput and Accurate Serum ProteomeProfiling by Integrated Sample Preparation Technology and Single-Run DataIndependent Mass Spectrometry Analysis[J]. Journal of Proteomics, 2018, 174:9-16.
[65] Xu R, Tang J, Deng Q, et al. Spatial-Resolution Cell Type Proteome Profilingof Cancer Tissue by Fully Integrated Proteomics Technology[J]. AnalyticalChemistry, 2018, 90(9): 5879-5886.
[66] Anderson N L, Anderson N G. The Human Plasma Proteome[J]. Molecular &Cellular Proteomics, 2002, 1(11): 845-867.
[67] Manning G, Whyte D B, Martinez R, et al. The Protein Kinase Complement ofthe Human Genome[J]. Science, 2002, 298(5600): 1912-1934.
修改评论