[1] Liu B, Wang J, Chan K M, et al. Genomic instability in laminopathy-basedpremature aging [J]. Nature Medicine, 2005, 11(7): 780-5.
[2] Pereira S, Bourgeois P, Navarro C, et al. HGPS and related prematureaging disorders: From genomic identification to the first therapeuticapproaches [J]. Mechanisms of Ageing and Development, 2008, 129(7-8):449-59.
[3] Kudlow B A, Kennedy B K, Monnat R J. Werner and Hutchinson–Gilfordprogeria syndromes: mechanistic basis of human progeroid diseases [J].Nature Reviews Molecular Cell Biology, 2007, 8(5): 394-404.
[4] Worman H J, Courvalin J C. The nuclear lamina and inherited disease [J].Trends in Cell Biology, 2002, 12(12): 591-8.
[5] Worman H J, Fong L G, Muchir A, et al. Laminopathies and the longstrange trip from basic cell biology to therapy [J]. Journal of ClinicalInvestigation, 2009, 119(7): 1825-36.
[6] Eriksson M, Brown W T, Gordon L B, et al. Recurrent de novo pointmutations in lamin A cause Hutchinson-Gilford progeria syndrome [J].Nature, 2003, 423(6937): 293-8.
[7] Navarro C L, Cadinanos J, De Sandre-Giovannoli A, et al. Loss ofZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathyand accumulation of Lamin A precursors [J]. Hum Mol Genet, 2005,14(11): 1503-13.
[8] Bergo M O, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causesspontaneous bone fractures, muscle weakness, and a prelamin A processingdefect [J]. Proc Natl Acad Sci U S A, 2002, 99(20): 13049-54.
[9] Capell B C, Erdos M R, Madigan J P, et al. Inhibiting farnesylation ofprogerin prevents the characteristic nuclear blebbing of HutchinsonGilford progeria syndrome [J]. Proceedings of the National Academy ofSciences of the United States of America, 2005, 102(36): 12879-84.
[10] Capell B C, Olive M, Erdos M R, et al. A farnesyltransferase inhibitorprevents both the onset and late progression of cardiovascular disease in aprogeria mouse model (vol 105, pg 15902, 2008) [J]. Proceedings of theNational Academy of Sciences of the United States of America, 2009,106(31): 13143-.
[11] Fong L G, Frost D, Meta M, et al. A protein farnesyltransferase inhibitorameliorates disease in a mouse model of progeria [J]. Science, 2006,311(5767): 1621-3.
[12] Toth J I, Yang S H, Qiao X, et al. Blocking protein farnesyltransferaseimproves nuclear shape in fibroblasts from humans with progeroidsyndromes [J]. Proceedings of the National Academy of Sciences of theUnited States of America, 2005, 102(36): 12873-8.
[13] Rober R A, Weber K, Osborn M. Differential Timing of Nuclear Lamina/C Expression in the Various Organs of the Mouse Embryo and the YoungAnimal - a Developmental-Study [J]. Development, 1989, 105(2): 365-78.
[14] Stewart C, Burke B. Teratocarcinoma stem cells and early mouse embryoscontain only a single major lamin polypeptide closely resembling lamin B[J]. Cell, 1987, 51(3): 383-92.
[15] Assembly-disassembly of the nuclear lamina [J]. 1992,
[16] Gerace L, Huber M D. Nuclear lamina at the crossroads of the cytoplasmand nucleus [J]. J Struct Biol, 2012, 177(1): 24-31.
[17] Lin F, Blake D L, Callebaut I, et al. MAN1, an inner nuclear membraneprotein that shares the LEM domain with lamina-associated polypeptide 2and emerin [J]. Journal of Biological Chemistry, 2000, 275(7): 4840-7.
[18] Cau P, Navarro C, Harhouri K, et al. Nuclear matrix, nuclear envelope andpremature aging syndromes in a translational research perspective [J].Semin Cell Dev Biol, 2014, 29(125-47.
[19] Kolb T, Maaß K, Hergt M, et al. Lamin A and lamin C form homodimersand coexist in higher complex forms both in the nucleoplasmic fractionand in the lamina of cultured human cells [J]. Nucleus, 2014, 2(5): 425-33.
[20] Adam S A, Goldman R D. Insights into the differences between the A- andB-type nuclear lamins [J]. Adv Biol Regul, 2012, 52(1): 108-13.
[21] Al-Haboubi T, Shumaker D K, Köser J, et al. Distinct association of thenuclear pore protein Nup153 with A- and B-type lamins [J]. Nucleus, 2014,2(5): 500-9.
[22] Spear E D, Hsu E-T, Nie L, et al. ZMPSTE24 missense mutations thatcause progeroid diseases decrease prelamin A cleavage activity and/orprotein stability [J]. Disease Models & Mechanisms, 2018, 11(7):
[23] Young S G, Fong L G, Michaelis S. Thematic Review Series: LipidPosttranslational Modifications.Prelamin A, Zmpste24, misshapen cellnuclei, and progeria—new evidence suggesting that protein farnesylationcould be important for disease pathogenesis [J]. Journal of Lipid Research,2005, 46(12): 2531-58.
[24] Brady G F, Kwan R, Bragazzi Cunha J, et al. Lamins and LaminAssociated Proteins in Gastrointestinal Health and Disease [J].Gastroenterology, 2018, 154(6): 1602-19 e1.
[25] DuBose A J, Lichtenstein S T, Petrash N M, et al. Everolimus rescuesmultiple cellular defects in laminopathy-patient fibroblasts [J]. Proc NatlAcad Sci U S A, 2018, 115(16): 4206-11.
[26] Burke B, Stewart C L. Life at the edge: the nuclear envelope and humandisease [J]. Nature Reviews Molecular Cell Biology, 2002, 3(8): 575-85.
[27] Zhang J, Lian Q, Zhu G, et al. A Human iPSC Model of HutchinsonGilford Progeria Reveals Vascular Smooth Muscle and Mesenchymal StemCell Defects [J]. Cell Stem Cell, 2011, 8(1): 31-45.
[28] Arancio W, Pizzolanti G, Genovese S I, et al. Epigenetic involvement inHutchinson-Gilford progeria syndrome: a mini-review [J]. Gerontology,2014, 60(3): 197-203.
[29] Bar D Z, Arlt M F, Brazier J F, et al. A novel somatic mutation achievespartial rescue in a child with Hutchinson-Gilford progeria syndrome [J]. JMed Genet, 2017, 54(3): 212-6.
[30] De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin a truncation inHutchinson-Gilford progeria [J]. Science, 2003, 300(5628): 2055.
[31] Scaffidi P, Misteli T. Reversal of the cellular phenotype in the prematureaging disease Hutchinson-Gilford progeria syndrome [J]. Nat Med, 2005,11(4): 440-5.
[32] Dechat T, Pfleghaar K, Sengupta K, et al. Nuclear lamins: major factors inthe structural organization and function of the nucleus and chromatin [J].Genes Dev, 2008, 22(7): 832-53.
[33] Kubben N, Adriaens M, Meuleman W, et al. Mapping of lamin A- andprogerin-interacting genome regions [J]. Chromosoma, 2012, 121(5): 447-64.
[34] McCord R P, Nazario-Toole A, Zhang H, et al. Correlated alterations ingenome organization, histone methylation, and DNA-lamin A/Cinteractions in Hutchinson-Gilford progeria syndrome [J]. Genome Res,2013, 23(2): 260-9.
[35] Liu B, Wang Z, Zhang L, et al. Depleting the methyltransferase Suv39h1improves DNA repair and extends lifespan in a progeria mouse model [J].Nat Commun, 2013, 4(1868.
[36] Cao K, Blair C D, Faddah D A, et al. Progerin and telomere dysfunctioncollaborate to trigger cellular senescence in normal human fibroblasts [J]. JClin Invest, 2011, 121(7): 2833-44.
[37] Marino-Ramirez L, Jordan I K, Landsman D. Multiple independentevolutionary solutions to core histone gene regulation [J]. Genome Biol,2006, 7(12): R122.
[38] Gonzalo S, Kreienkamp R. DNA repair defects and genome instability inHutchinson–Gilford Progeria Syndrome [J]. Current Opinion in CellBiology, 2015, 34(75-83.
[39] Liu Y, Rusinol A, Sinensky M, et al. DNA damage responses in progeroidsyndromes arise from defective maturation of prelamin A [J]. Journal ofCell Science, 2006, 119(22): 4644-9.
[40] Lombard D B, Chua K F, Mostoslavsky R, et al. DNA repair, genomestability, and aging [J]. Cell, 2005, 120(4): 497-512.
[41] Zglinicki T v, Saretzki G, Ladhoff J, et al. Human cell senescence as aDNA damage response [J]. Mechanisms of Ageing and Development, 2005,126(1): 111-7.
[42] Varela I, Cadiñanos J, Pendás A M, et al. Accelerated ageing in micedeficient in Zmpste24 protease is linked to p53 signalling activation [J].Nature, 2005, 437(7058): 564-8.
[43] Li L, Zou L. Sensing, signaling, and responding to DNA damage:organization of the checkpoint pathways in mammalian cells [J]. J CellBiochem, 2005, 94(2): 298-306.
[44] Sancar A, Lindsey-Boltz L A, Unsal-Kacmaz K, et al. Molecularmechanisms of mammalian DNA repair and the DNA damage checkpoints[J]. Annu Rev Biochem, 2004, 73(39-85.
[45] Pendas A M, Zhou Z, Cadinanos J, et al. Defective prelamin A processingand muscular and adipocyte alterations in Zmpste24 metalloproteinasedeficient mice [J]. Nat Genet, 2002, 31(1): 94-9.
[46] Fong L G, Ng J K, Meta M, et al. Heterozygosity for Lmna deficiencyeliminates the progeria-like phenotypes in Zmpste24-deficient mice [J].Proc Natl Acad Sci U S A, 2004, 101(52): 18111-6.
[47] Fong L G, Frost D, Meta M, et al. A protein farnesyltransferase inhibitorameliorates disease in a mouse model of progeria [J]. Science, 2006,311(5767): 1621-3.
[48] Yang S H. A farnesyltransferase inhibitor improves disease phenotypes inmice with a Hutchinson-Gilford progeria syndrome mutation [J]. Journal ofClinical Investigation, 2006, 116(8): 2115-21.
[49] Fong L G, Ng J K, Lammerding J, et al. Prelamin A and lamin A appear tobe dispensable in the nuclear lamina [J]. J Clin Invest, 2006, 116(3): 743-52.
[50] Osorio F G, Navarro C L, Cadinanos J, et al. Splicing-directed therapy in anew mouse model of human accelerated aging [J]. Sci Transl Med, 2011,3(106): 106ra7.
[51] Young S G, Meta M, Yang S H, et al. Prelamin A Farnesylation andProgeroid Syndromes [J]. Journal of Biological Chemistry, 2006, 281(52):39741-5.
[52] Young S G, Yang S H, Davies B S J, et al. Targeting Protein Prenylation inProgeria [J]. Science Translational Medicine, 2013, 5(171):
[53] Johnson S C, Rabinovitch P S, Kaeberlein M. mTOR is a key modulator ofageing and age-related disease [J]. Nature, 2013, 493(7432): 338-45.
[54] Cao K, Graziotto J J, Blair C D, et al. Rapamycin reverses cellularphenotypes and enhances mutant protein clearance in Hutchinson-Gilfordprogeria syndrome cells [J]. Sci Transl Med, 2011, 3(89): 89ra58.
[55] Ramos F J, Chen S C, Garelick M G, et al. Rapamycin reverses elevatedmTORC1 signaling in lamin A/C-deficient mice, rescues cardiac andskeletal muscle function, and extends survival [J]. Sci Transl Med, 2012,4(144): 144ra03.
[56] Steigemann P, Wurzenberger C, Schmitz M H, et al. Aurora B-mediatedabscission checkpoint protects against tetraploidization [J]. Cell, 2009,136(3): 473-84.
[57] Barrangou R. The roles of CRISPR–Cas systems in adaptive immunity andbeyond [J]. Current Opinion in Immunology, 2015, 32(36-41.
[58] Hsu P D, Lander E S, Zhang F. Development and applications of CRISPRCas9 for genome engineering [J]. Cell, 2014, 157(6): 1262-78.
[59] Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress,implications and challenges [J]. Human Molecular Genetics, 2014, 23(R1):R40-R6.
[60] Zhang J H, Adikaram P, Pandey M, et al. Optimization of genome editingthrough CRISPR-Cas9 engineering [J]. Bioengineered, 2016, 7(3): 166-74.
[61] Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPRCas9 system [J]. Nat Protoc, 2013, 8(11): 2281-308.
[62] Rees H A, Liu D R. Base editing: precision chemistry on the genome andtranscriptome of living cells [J]. Nat Rev Genet, 2018, 19(12): 770-88.
[63] Komor A C, Kim Y B, Packer M S, et al. Programmable editing of a targetbase in genomic DNA without double-stranded DNA cleavage [J]. Nature,2016, 533(7603): 420-4.
[64] Fededa J P, Gerlich D W. Molecular control of animal cell cytokinesis [J].Nat Cell Biol, 2012, 14(5): 440-7.
[65] Petronczki M, Glotzer M, Kraut N, et al. Polo-like kinase 1 triggers theinitiation of cytokinesis in human cells by promoting recruitment of theRhoGEF Ect2 to the central spindle [J]. Dev Cell, 2007, 12(5): 713-25.
[66] Santelli E, Bankston L A, Leppla S H, et al. Crystal structure of a complexbetween anthrax toxin and its host cell receptor [J]. Nature, 2004,430(7002): 905-8.
[67] Mackay D R, Makise M, Ullman K S. Defects in nuclear pore assemblylead to activation of an Aurora B–mediated abscission checkpoint [J]. TheJournal of Cell Biology, 2010, 191(5): 923-31.
[68] Paweletz N. Walther Flemming: pioneer of mitosis research [J]. Nat RevMol Cell Biol, 2001, 2(1): 72-5.
[69] Mullins J M. Isolation and initial characterization of the mammalianmidbody [J]. The Journal of Cell Biology, 1982, 94(3): 654-61.
[70] Skop A R, Liu H, Yates J, 3rd, et al. Dissection of the mammalianmidbody proteome reveals conserved cytokinesis mechanisms [J]. Science,2004, 305(5680): 61-6.
[71] Banfalvi G. Overview of Cell Synchronization [J]. Methods Mol Biol,2017, 1524(3-27.
[72] Maul G G, Deaven L. Quantitative determination of nuclear porecomplexes in cycling cells with differing DNA content [J]. J Cell Biol,1977, 73(3): 748-60.
[73] Moroianu J, Blobel G, Radu A. RanGTP-mediated nuclear export ofkaryopherin alpha involves its interaction with the nucleoporin Nup153 [J].Proc Natl Acad Sci U S A, 1997, 94(18): 9699-704.
[74] Eisenhardt N, Redolfi J, Antonin W. Interaction of Nup53 with Ndc1 andNup155 is required for nuclear pore complex assembly [J]. Journal of CellScience, 2014, 127(4): 908-21.
[75] Cordes M E H a V C. Direct Interaction with Nup153 Mediates Binding ofTpr to the Periphery of the NPC [J]. Molecular Biology of the Cell, 2003,
修改评论