[1] aMufson E J, Mahady L, Waters D, et al. Hippocampal plasticity during theaprogression of Alzheimer’s disease[J]. Neuroscience, 2015, 309: 51–67.
[2] aBartsch T, Wulff P. The hippocampus in aging and disease: From plasticity toavulnerability[J]. Hippocampal vulnerability: from molecules to disease, 2015,a309: 1–16.
[3] aThe hippocampus book[M]. ANDERSEN P. Oxford ; New York: OxfordaUniversity Press, 2007.
[4] ade Lahunta A, Glass E N, Kent M. Embryonic Development of the CentralaNervous System[J]. The Veterinary Clinics of North America. Small AnimalaPractice, 2016, 46(2): 193–216.
[5] aMartin J, Radzyner H J, Leonard M E. Neuroanatomy: Text and Atlas[M].aMcGraw-Hill Companies,Incorporated, 2003.
[6] aWright M. The Hippocampus[J]. WikiJournal of Medicine, 2017, 4(1).
[7] aShipley M T, Adamek G D. The connections of the mouse olfactory bulb: a studyausing orthograde and retrograde transport of wheat germ agglutinin conjugatedato horseradish peroxidase[J]. Brain Research Bulletin, 1984, 12(6): 669–688.
[8] aAmaral D G, Insausti R, Cowan W M. The entorhinal cortex of the monkey: I.aCytoarchitectonic organization[J]. The Journal of Comparative Neurology,a1987, 264(3): 326–355.
[9] aJia H, Pustovyy O M, Waggoner P, et al. Functional MRI of the olfactory systemain conscious dogs[J]. PloS one, 2014, 9(1): e86362–e86362.
[10]aYang Y, Wang J-Z. From Structure to Behavior in Basolateral AmygdalaaHippocampus Circuits[J]. Frontiers in neural circuits, 2017, 11: 86–86.
[11]aGirardeau G, Inema I, Buzsáki G. Reactivations of emotional memory in theahippocampus–amygdala system during sleep[J]. Nature Neuroscience, 2017, 20:a1634.
[12]aSCOVILLE W B, MILNER B. Loss of recent memory after bilateralahippocampal lesions[J]. Journal of neurology, neurosurgery, and psychiatry,a1957, 20(1): 11–21.
[13]aSAGAR H J, COHEN N J, CORKIN S, et al. Dissociations Among Processesain Remote Memory[J]. Annals of the New York Academy of Sciences, 1985,a444(1): 533–535.
[14]aGaffan D. Loss of recognition memory in rats with lesions of the fornix[J].aNeuropsychologia, 1972, 10(3): 327–341.
[15]aHirsh R. The hippocampus and contextual retrieval of information from memory:aa theory[J]. Behavioral Biology, 1974, 12(4): 421–444.
[16]aNadel L, O’Keefe J. The hippocampus in pieces and patches: An essay on modesaof explanation in physiological psychology[M]. 1974.
[17]aOlton D S, Walker J A, Gage F H. Hippocampal connections and spatialadiscrimination[J]. Brain Research, 1978, 139(2): 295–308.
[18]aVoss J L, Bridge D J, Cohen N J, et al. A Closer Look at the Hippocampus andaMemory[J]. Trends in cognitive sciences, 2017, 21(8): 577–588.
[19]aRolls E T. The storage and recall of memories in the hippocampo-corticalasystem[J]. Cell and tissue research, 2018, 373(3): 577–604.
[20]aSchapiro A C, Turk-Browne N B, Botvinick M M, et al. Complementaryalearning systems within the hippocampus: a neural network modelling approachato reconciling episodic memory with statistical learning[J]. Philosophicalatransactions of the Royal Society of London. Series B, Biological sciences, 2017,a372(1711): 20160049.
[21]aDudek S M, Alexander G M, Farris S. Rediscovering area CA2: uniqueaproperties and functions[J]. Nature Reviews Neuroscience, 2016, 17: 89.
[22]aAlkadhi K A. Cellular and Molecular Differences Between Area CA1 and theaDentate Gyrus of the Hippocampus[J]. Molecular Neurobiology, 2019.
[23]aZhao C, Teng E M, Summers R G, et al. Distinct Morphological Stages ofaDentate Granule Neuron Maturation in the Adult Mouse Hippocampus[J]. TheaJournal of Neuroscience, 2006, 26(1): 3.
[24]aDeng W, Aimone J B, Gage F H. New neurons and new memories: how doesaadult hippocampal neurogenesis affect learning and memory?[J]. NatureaReviews Neuroscience, 2010, 11(5): 339–350.
[25]aFarzaneh M, Sayyah M, Eshraghi H R, et al. Transduction efficacy andaretrograde movement of a lentiviral vector pseudotyped by modified rabiesaglycoprotein throughout the trisynaptic circuit of the rat hippocampus[J]. TheaJournal of Gene Medicine, 2018, 20(9): e3046.
[26]aStepan J, Dine J, Eder M. Functional optical probing of the hippocampalatrisynaptic circuit in vitro: network dynamics, filter properties, and polysynapticainduction of CA1 LTP[J]. Frontiers in neuroscience, 2015, 9: 160–160.
[27]aShanmugasundaram B, Sase A, Miklosi A G, et al. Frontal cortex andahippocampus neurotransmitter receptor complex level parallels spatial memoryaperformance in the radial arm maze[J]. Behavioural Brain Research, 2015, 289:a157–168.
[28]aYoshihara T, Ichitani Y. Hippocampal N-methyl-d-aspartatereceptor-mediatedaencoding and retrieval processes in spatial working memory: Delay-interposedaradial maze performance in rats[J]. Neuroscience, 2004, 129(1): 1–10.
[29]aIzquierdo I. Pharmacological evidence for a role of long-term potentiation inamemory[J]. FASEB Journal, 1994, 8(14): 1139–1145.
[30]aCroxson P L, Kyriazis D A, Baxter M G. Cholinergic modulation of a specificamemory function of prefrontal cortex[J]. Nature Neuroscience, 2011, 14: 1510.
[31]aHidaka N, Suemaru K, Kato Y, et al. Involvement of α4β2 nicotinicaacetylcholine receptors in working memory impairment induced by repeatedaelectroconvulsive seizures in rats[J]. Epilepsy Research, 2013, 104(1): 181–185.
[32]aYang Y, Paspalas C D, Jin L E, et al. Nicotinic α7 receptors enhance NMDAacognitive circuits in dorsolateral prefrontal cortex[J]. Proceedings of theaNational Academy of Sciences, 2013, 110(29): 12078.
[33]aDeiana S, Platt B, Riedel G. The cholinergic system and spatial learning[J].aBehavioural Brain Research, 2011, 221(2): 389–411.
[34]aWan P, Wang S, Zhang Y, et al. Involvement of dopamine d1 receptors of theahippocampal dentate gyrus in spatial learning and memory deficits in a ratamodel of vascular dementia[J]. Pharmazie, 2014, 69(9): 709–710.
[35]aDubovyk V, Manahan-Vaughan D. Less means more: The magnitude of synapticaplasticity along the hippocampal dorso-ventral axis is inversely related to theaexpression levels of plasticity-related neurotransmitter receptors[J].aHippocampus, 2018, 28(2): 136–150.
[36]aTsien R Y. THE GREEN FLUORESCENT PROTEIN[J]. Annual Review ofaBiochemistry, 1998, 67(1): 509–544.
[37]aWakayama S, Kiyonaka S, Arai I, et al. Chemical labelling for visualizing nativeaAMPA receptors in live neurons[J]. Nature communications, 2017, 8: 14850–14850.
[38]aFitzsimonds R M, Poo M M. Retrograde signaling in the development andamodification of synapses[J]. Physiological Reviews, 1998, 78(1): 143–170.
[39]aCui B, Wu C, Chen L, et al. One at a time, live tracking of NGF axonal transportausing quantum dots[J]. Proceedings of the National Academy of Sciences of theaUnited States of America, 2007, 104(34): 13666–13671.
[40]aTerauchi A, Johnson-Venkatesh E M, Bullock B, et al. Retrograde fibroblastagrowth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2)aexpression for activity-dependent synapse stabilization in the mammalianabrain[J]. eLife, 2016, 5.
[41]aFarzaneh M, Sayyah M, Eshraghi H R, et al. Transduction efficacy andaretrograde movement of a lentiviral vector pseudotyped by modified rabiesaglycoprotein throughout the trisynaptic circuit of the rat hippocampus[J]. TheaJournal of Gene Medicine, 2018, 20(9): e3046.
[42]aRaux H, Flamand A, Blondel D. Interaction of the rabies virus P protein withathe LC8 dynein light chain[J]. Journal of virology, 2000, 74(21): 10212–10216.
[43]aChevaleyre V, Takahashi K A, Castillo P E. ENDOCANNABINOIDaMEDIATED SYNAPTIC PLASTICITY IN THE CNS[J]. Annual Review ofaNeuroscience, 2006, 29(1): 37–76.
[44]aGarthwaite J. Concepts of neural nitric oxide-mediated transmission[J]. TheaEuropean journal of neuroscience, 2008, 27(11): 2783–2802.
[45]aRegehr W G, Carey M R, Best A R. Activity-dependent regulation of synapsesaby retrograde messengers[J]. Neuron, 2009, 63(2): 154–170.
[46]aDent E W, Callaway J L, Szebenyi G, et al. Reorganization and Movement ofaMicrotubules in Axonal Growth Cones and Developing Interstitial Branches[J].aThe Journal of Neuroscience, 1999, 19(20): 8894.
[47]aSüdhof T C. Neuroligins and neurexins link synaptic function to cognitiveadisease[J]. Nature, 2008, 455(7215): 903–911.
[48]aTakeichi M. The cadherin superfamily in neuronal connections andainteractions[J]. Nature Reviews. Neuroscience, 2007, 8(1): 11–20.
[49]aLim B K, Matsuda N, Poo M. Ephrin-B reverse signaling promotes structuralaand functional synaptic maturation in vivo[J]. Nature Neuroscience, 2008, 11(2):a160–169.
[50]aMonory K, Massa F, Egertová M, et al. The endocannabinoid system controlsakey epileptogenic circuits in the hippocampus[J]. Neuron, 2006, 51(4): 455–a466.
[51]aRich M M, Wenner P. Sensing and expressing homeostatic synaptic plasticity[J].aTrends in Neurosciences, 2007, 30(3): 119–125.
[52]aMalenka R C, Bear M F. LTP and LTD: an embarrassment of riches[J]. Neuron,a2004, 44(1): 5–21.
[53]aCatapano J, Zhang J, Scholl D, et al. N-Acetylcysteine Prevents RetrogradeaMotor Neuron Death after Neonatal Peripheral Nerve Injury.[J]. Plastic andareconstructive surgery, 2017, 139(5): 1105e–1115e.
[54]aKorkut C, Li Y, Koles K, et al. Regulation of postsynaptic retrograde signalingaby presynaptic exosome release[J]. Neuron, 2013, 77(6): 1039–1046.
[55]aChevaleyre V, Takahashi K A, Castillo P E. Endocannabinoid-mediated synapticaplasticity in the CNS[J]. Annual Review of Neuroscience, 2006, 29: 37–76.
[56]aFreund T F, Katona I, Piomelli D. Role of endogenous cannabinoids in synapticasignaling[J]. Physiological Reviews, 2003, 83(3): 1017–1066.
[57]aBrown S P, Brenowitz S D, Regehr W G. Brief presynaptic bursts evokeasynapse-specific retrograde inhibition mediated by endogenous cannabinoids[J].aNature Neuroscience, 2003, 6(10): 1048–1057.
[58]aHashimotodani Y, Ohno-Shosaku T, Tsubokawa H, et al. Phospholipase Cbetaaserves as a coincidence detector through its Ca2+ dependency for triggeringaretrograde endocannabinoid signal[J]. Neuron, 2005, 45(2): 257–268.
[59]aBallard S L, Miller D L, Ganetzky B. Retrograde neurotrophin signalingathrough Tollo regulates synaptic growth in Drosophila[J]. The Journal of CellaBiology, 2014, 204(7): 1157–1172.
[60]aUesaka N, Uchigashima M, Mikuni T, et al. Retrograde signaling for climbingafiber synapse elimination[J]. Cerebellum (London, England), 2015, 14(1): 4–7.
[61]aMillet L J, Gillette M U. Over a century of neuron culture: from the hangingadrop to microfluidic devices[J]. The Yale journal of biology and medicine, 2012,a85(4): 501–521.
[62]aMajumdar D, Gao Y, Li D, et al. Co-culture of neurons and glia in a novelamicrofluidic platform[J]. Journal of Neuroscience Methods, 2011, 196(1): 38–a44.
[63]aPagella P, Neto E, Jiménez-Rojo L, et al. Microfluidics co-culture systems forastudying tooth innervation[J]. Frontiers in physiology, 2014, 5: 326–326.
[64]aPolanco J C, Li C, Durisic N, et al. Exosomes taken up by neurons hijack theaendosomal pathway to spread to interconnected neurons[J]. Actaaneuropathologica communications, 2018, 6(1): 10–10.
[65]aKorhonen P, Malm T, White A R. 3D human brain cell models: New frontiers inadisease understanding and drug discovery for neurodegenerative diseases[J].aNeurochemistry International, 2018, 120: 191–199.
[66]aOsaki T, Shin Y, Sivathanu V, et al. In Vitro Microfluidic Models foraNeurodegenerative Disorders[J]. Advanced Healthcare Materials, 2018, 7(2):a1700489.
[67]aHu P, Zhang W, Xin H, et al. Single Cell Isolation and Analysis[J]. Frontiers inaCell and Developmental Biology, 2016, 4: 116.
[68]aMuzumdar M D, Tasic B, Miyamichi K, et al. A global double-fluorescent Creareporter mouse[J]. genesis, 2007, 45(9): 593–605.
[69]aBrewer G J, Torricelli J R. Isolation and culture of adult neurons andaneurospheres[J]. : 9.
[70]aMartini F E A. Anatomy and Physiology’ 2007 Ed.2007 Edition[M]. RexaBookstore, Inc.
[71]aSingle cell sequencing[J]. 维基百科, 2019.
[72]aEberwine J, Sul J-Y, Bartfai T, et al. The promise of single-cell sequencing[J].aNature Methods, 2013, 11: 25.
[73]aPennisi E. Chronicling embryos, cell by cell, gene by gene[J]. Science, 2018,a360(6387): 367.
[74]aNeuron[J]. Wikipedia, 2019.
[75]aGranule cell[J]. Wikipedia, 2019.
[76]aClaiborne B J, Amaral D G, Cowan W M. Quantitative, three-dimensionalaanalysis of granule cell dendrites in the rat dentate gyrus[J]. Journal ofaComparative Neurology, 1990, 302(2): 206–219.
[77]aMegı́as M, Emri Z, Freund T F, et al. Total number and distribution of inhibitoryaand excitatory synapses on hippocampal CA1 pyramidal cells[J]. Neuroscience,a2001, 102(3): 527–540.
[78]aMicrofluidics[J]. Wikipedia, 2019.
[79]aLayton C J, McMahon P L, Greenleaf W J. Large-Scale, Quantitative ProteinaAssays on a High-Throughput DNA Sequencing Chip[J]. Molecular Cell, 2019,a73(5): 1075-1082.e4.
[80]aVolpatti L R, Yetisen A K. Commercialization of microfluidic devices[J]. Trendsain Biotechnology, 2014, 32(7): 347–350.
[81]aBhatia S N, Ingber D E. Microfluidic organs-on-chips[J]. Nature Biotechnology,a2014, 32: 760.
[82]aLee U N, Su X, Guckenberger D J, et al. Fundamentals of rapid injectionamolding for microfluidic cell-based assays[J]. Lab on a Chip, 2018, 18(3): 496–a504.
[83]aMicrofluidic cell culture[J]. 维基百科, 2019.
[84]aPolydimethylsiloxane[J]. 维基百科, 2019.
[85]aLu Z, Piechowicz M, Qiu S. A Simplified Method for Ultra-Low Density, LongaTerm Primary Hippocampal Neuron Culture[J]. Journal of visualizedaexperiments : JoVE, 2016(109): 53797.
[86]aDiI[J]. Wikipedia, 2019.
[87]aFACS (fluorescence-activated cell sorting)[G]//Encyclopedia of Genetics,aGenomics, Proteomics and Informatics. Dordrecht: Springer Netherlands, 2008:a668–668.
修改评论