中文版 | English
题名

小鼠海马神经元发育的信号调控研究

其他题名
SIGNAL REGULATION STUDY OF MOUSE HIPPOCAMPAL DEVELOPMENT
姓名
姓名拼音
LIANG Fanghao
学号
11749075
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
姬生健
导师单位
生命科学学院@生物系
论文答辩日期
2019-05
论文提交日期
2022-10-14
学位授予单位
哈尔滨工业大学
学位授予地点
哈尔滨
摘要

海马体是迄今为止神经生物学研究最多的脑区之一。其独特的结构特征,
如兴奋性三突触回路( EC→DG→CA3→CA1→EC) 等,非常有利于神经元之间
的信号调控研究。 在神经元的信号调控中, 过去一般认为是单向的,即由突触
前神经元通过突触释放化学或电信号到突触后神经元并调控其功能。 但是近年
来越来越多的证据表明,神经元可以通过突触实现双向传递信息。 本课题希望
建立一套基于微流控系统的海马体神经元体外突触体系,用于研究海马体中 CA
锥体神经元(突触后) 释放的信号通过突触来逆向调控齿状回( DG)颗粒细胞
(突触前) 的基因表达和发育。主要研究内容包括探索高效分离海马体不同神
经元的方法, 设计与组装微流控系统, 验证神经元体外培养中的突触形成, FAST
DiI 染料逆向标记的神经元的流式分选, RNA 提取以用于 RNA 测序和转录组
学分析等。其中主要用到大脑精细结构解剖技术、 神经元体外培养技术、 细胞
荧光流式分选技术、逆向荧光染料标记技术和 RNA 提取等研究方法。本课题
的创新性在于把微流控技术与神经元培养相结合,使多种神经元在同一条件下
流体分隔培养, 同时可以使神经元之间建立突触联系, 于是拥有可以对一种或
多种神经元进行便捷处理的可能性,可以非常方便地收集到逆向信号调控后的
神经元,并进行后期研究。本课题的主要意义首先在于建立了一套成熟的海马
体神经元体外微流控培养体系, 不仅能实现逆向信号的调控研究,还可以方便
地适用于其他信号调控和其他神经元培养;其次是迄今领域内逆向信号调控研
究进展缓慢,通过本课题的研究希望能在在该领域中开辟一条道路。
 

其他摘要

The hippocampus is one of the most popular brain regions studied by
neuroscientists so far. Its unique structural features, such as excitatory three-synaptic
circuits (EC→DG→CA3→CA1→EC), are very useful for signal regulation studies
between neurons. In the signal regulation of neurons, it is generally considered to be
unidirectional, that is, the presynaptic neurons release chemical and electrical signals
to the postsynaptic neurons via synapses and regulate it. But in recent years, there is
increasing evidence that neurons can transmit information bidirectionally through
synapses. This project aims to establish an in vitro synapse formation system of
hippocampal neurons based on microfluidic devices for studying retrograde
regulation of gene expression and development of dentate gyrus (DG) granule cells
(presynaptic) by signal(s) released by CA pyramidal neurons (postsynaptic) in a
retrograde manner. The main research contents include exploring methods for
efficiently dissecting and separating different neurons of hippocampus, designing and
assembling microfluidic systems, verifying synapse formation in vitro cell culture,
sorting specific cells of FAST DiI retrograde labeling, RNA extraction to prepare for
RNA sequencing and transcriptomic analysis. The techniques and methods used in
this study are fine brain structure anatomy, FACS sorting, in vitro neuron culture,
retrograde labeling by fluorochrome and RNA extraction. The innovation of this
subject lies in the combination of microfluidic technology and neuronal culture, so
that a variety of neurons can be cultured separately under the same conditions, and
at the same time, synaptic connections can be established between the neurons. This
opens up the possibility of processing one or more neurons conveniently so that it is
very easy to collect the specific neurons after the retrograde signal regulation and
conduct the later research. The main significance of this topic is firstly to establish a
set of microfluidic cell culture system of hippocampal neurons in vitro, which can
not only realize the study of retrograde signal regulation, but also can be easily
applied to other signal regulation and other neuronal cultures; secondly, since
progress in retrograde signal regulation is limited, we hope this project can open a
new path in this field.
 

关键词
其他关键词
语种
中文
培养类别
联合培养
入学年份
2017
学位授予年份
2019-07
参考文献列表

[1] aMufson E J, Mahady L, Waters D, et al. Hippocampal plasticity during theaprogression of Alzheimer’s disease[J]. Neuroscience, 2015, 309: 51–67.
[2] aBartsch T, Wulff P. The hippocampus in aging and disease: From plasticity toavulnerability[J]. Hippocampal vulnerability: from molecules to disease, 2015,a309: 1–16.
[3] aThe hippocampus book[M]. ANDERSEN P. Oxford ; New York: OxfordaUniversity Press, 2007.
[4] ade Lahunta A, Glass E N, Kent M. Embryonic Development of the CentralaNervous System[J]. The Veterinary Clinics of North America. Small AnimalaPractice, 2016, 46(2): 193–216.
[5] aMartin J, Radzyner H J, Leonard M E. Neuroanatomy: Text and Atlas[M].aMcGraw-Hill Companies,Incorporated, 2003.
[6] aWright M. The Hippocampus[J]. WikiJournal of Medicine, 2017, 4(1).
[7] aShipley M T, Adamek G D. The connections of the mouse olfactory bulb: a studyausing orthograde and retrograde transport of wheat germ agglutinin conjugatedato horseradish peroxidase[J]. Brain Research Bulletin, 1984, 12(6): 669–688.
[8] aAmaral D G, Insausti R, Cowan W M. The entorhinal cortex of the monkey: I.aCytoarchitectonic organization[J]. The Journal of Comparative Neurology,a1987, 264(3): 326–355.
[9] aJia H, Pustovyy O M, Waggoner P, et al. Functional MRI of the olfactory systemain conscious dogs[J]. PloS one, 2014, 9(1): e86362–e86362.
[10]aYang Y, Wang J-Z. From Structure to Behavior in Basolateral AmygdalaaHippocampus Circuits[J]. Frontiers in neural circuits, 2017, 11: 86–86.
[11]aGirardeau G, Inema I, Buzsáki G. Reactivations of emotional memory in theahippocampus–amygdala system during sleep[J]. Nature Neuroscience, 2017, 20:a1634.
[12]aSCOVILLE W B, MILNER B. Loss of recent memory after bilateralahippocampal lesions[J]. Journal of neurology, neurosurgery, and psychiatry,a1957, 20(1): 11–21.
[13]aSAGAR H J, COHEN N J, CORKIN S, et al. Dissociations Among Processesain Remote Memory[J]. Annals of the New York Academy of Sciences, 1985,a444(1): 533–535.
[14]aGaffan D. Loss of recognition memory in rats with lesions of the fornix[J].aNeuropsychologia, 1972, 10(3): 327–341.
[15]aHirsh R. The hippocampus and contextual retrieval of information from memory:aa theory[J]. Behavioral Biology, 1974, 12(4): 421–444.
[16]aNadel L, O’Keefe J. The hippocampus in pieces and patches: An essay on modesaof explanation in physiological psychology[M]. 1974.
[17]aOlton D S, Walker J A, Gage F H. Hippocampal connections and spatialadiscrimination[J]. Brain Research, 1978, 139(2): 295–308.
[18]aVoss J L, Bridge D J, Cohen N J, et al. A Closer Look at the Hippocampus andaMemory[J]. Trends in cognitive sciences, 2017, 21(8): 577–588.
[19]aRolls E T. The storage and recall of memories in the hippocampo-corticalasystem[J]. Cell and tissue research, 2018, 373(3): 577–604.
[20]aSchapiro A C, Turk-Browne N B, Botvinick M M, et al. Complementaryalearning systems within the hippocampus: a neural network modelling approachato reconciling episodic memory with statistical learning[J]. Philosophicalatransactions of the Royal Society of London. Series B, Biological sciences, 2017,a372(1711): 20160049.
[21]aDudek S M, Alexander G M, Farris S. Rediscovering area CA2: uniqueaproperties and functions[J]. Nature Reviews Neuroscience, 2016, 17: 89.
[22]aAlkadhi K A. Cellular and Molecular Differences Between Area CA1 and theaDentate Gyrus of the Hippocampus[J]. Molecular Neurobiology, 2019.
[23]aZhao C, Teng E M, Summers R G, et al. Distinct Morphological Stages ofaDentate Granule Neuron Maturation in the Adult Mouse Hippocampus[J]. TheaJournal of Neuroscience, 2006, 26(1): 3.
[24]aDeng W, Aimone J B, Gage F H. New neurons and new memories: how doesaadult hippocampal neurogenesis affect learning and memory?[J]. NatureaReviews Neuroscience, 2010, 11(5): 339–350.
[25]aFarzaneh M, Sayyah M, Eshraghi H R, et al. Transduction efficacy andaretrograde movement of a lentiviral vector pseudotyped by modified rabiesaglycoprotein throughout the trisynaptic circuit of the rat hippocampus[J]. TheaJournal of Gene Medicine, 2018, 20(9): e3046.
[26]aStepan J, Dine J, Eder M. Functional optical probing of the hippocampalatrisynaptic circuit in vitro: network dynamics, filter properties, and polysynapticainduction of CA1 LTP[J]. Frontiers in neuroscience, 2015, 9: 160–160.
[27]aShanmugasundaram B, Sase A, Miklosi A G, et al. Frontal cortex andahippocampus neurotransmitter receptor complex level parallels spatial memoryaperformance in the radial arm maze[J]. Behavioural Brain Research, 2015, 289:a157–168.
[28]aYoshihara T, Ichitani Y. Hippocampal N-methyl-d-aspartatereceptor-mediatedaencoding and retrieval processes in spatial working memory: Delay-interposedaradial maze performance in rats[J]. Neuroscience, 2004, 129(1): 1–10.
[29]aIzquierdo I. Pharmacological evidence for a role of long-term potentiation inamemory[J]. FASEB Journal, 1994, 8(14): 1139–1145.
[30]aCroxson P L, Kyriazis D A, Baxter M G. Cholinergic modulation of a specificamemory function of prefrontal cortex[J]. Nature Neuroscience, 2011, 14: 1510.
[31]aHidaka N, Suemaru K, Kato Y, et al. Involvement of α4β2 nicotinicaacetylcholine receptors in working memory impairment induced by repeatedaelectroconvulsive seizures in rats[J]. Epilepsy Research, 2013, 104(1): 181–185.
[32]aYang Y, Paspalas C D, Jin L E, et al. Nicotinic α7 receptors enhance NMDAacognitive circuits in dorsolateral prefrontal cortex[J]. Proceedings of theaNational Academy of Sciences, 2013, 110(29): 12078.
[33]aDeiana S, Platt B, Riedel G. The cholinergic system and spatial learning[J].aBehavioural Brain Research, 2011, 221(2): 389–411.
[34]aWan P, Wang S, Zhang Y, et al. Involvement of dopamine d1 receptors of theahippocampal dentate gyrus in spatial learning and memory deficits in a ratamodel of vascular dementia[J]. Pharmazie, 2014, 69(9): 709–710.
[35]aDubovyk V, Manahan-Vaughan D. Less means more: The magnitude of synapticaplasticity along the hippocampal dorso-ventral axis is inversely related to theaexpression levels of plasticity-related neurotransmitter receptors[J].aHippocampus, 2018, 28(2): 136–150.
[36]aTsien R Y. THE GREEN FLUORESCENT PROTEIN[J]. Annual Review ofaBiochemistry, 1998, 67(1): 509–544.
[37]aWakayama S, Kiyonaka S, Arai I, et al. Chemical labelling for visualizing nativeaAMPA receptors in live neurons[J]. Nature communications, 2017, 8: 14850–14850.
[38]aFitzsimonds R M, Poo M M. Retrograde signaling in the development andamodification of synapses[J]. Physiological Reviews, 1998, 78(1): 143–170.
[39]aCui B, Wu C, Chen L, et al. One at a time, live tracking of NGF axonal transportausing quantum dots[J]. Proceedings of the National Academy of Sciences of theaUnited States of America, 2007, 104(34): 13666–13671.
[40]aTerauchi A, Johnson-Venkatesh E M, Bullock B, et al. Retrograde fibroblastagrowth factor 22 (FGF22) signaling regulates insulin-like growth factor 2 (IGF2)aexpression for activity-dependent synapse stabilization in the mammalianabrain[J]. eLife, 2016, 5.
[41]aFarzaneh M, Sayyah M, Eshraghi H R, et al. Transduction efficacy andaretrograde movement of a lentiviral vector pseudotyped by modified rabiesaglycoprotein throughout the trisynaptic circuit of the rat hippocampus[J]. TheaJournal of Gene Medicine, 2018, 20(9): e3046.
[42]aRaux H, Flamand A, Blondel D. Interaction of the rabies virus P protein withathe LC8 dynein light chain[J]. Journal of virology, 2000, 74(21): 10212–10216.
[43]aChevaleyre V, Takahashi K A, Castillo P E. ENDOCANNABINOIDaMEDIATED SYNAPTIC PLASTICITY IN THE CNS[J]. Annual Review ofaNeuroscience, 2006, 29(1): 37–76.
[44]aGarthwaite J. Concepts of neural nitric oxide-mediated transmission[J]. TheaEuropean journal of neuroscience, 2008, 27(11): 2783–2802.
[45]aRegehr W G, Carey M R, Best A R. Activity-dependent regulation of synapsesaby retrograde messengers[J]. Neuron, 2009, 63(2): 154–170.
[46]aDent E W, Callaway J L, Szebenyi G, et al. Reorganization and Movement ofaMicrotubules in Axonal Growth Cones and Developing Interstitial Branches[J].aThe Journal of Neuroscience, 1999, 19(20): 8894.
[47]aSüdhof T C. Neuroligins and neurexins link synaptic function to cognitiveadisease[J]. Nature, 2008, 455(7215): 903–911.
[48]aTakeichi M. The cadherin superfamily in neuronal connections andainteractions[J]. Nature Reviews. Neuroscience, 2007, 8(1): 11–20.
[49]aLim B K, Matsuda N, Poo M. Ephrin-B reverse signaling promotes structuralaand functional synaptic maturation in vivo[J]. Nature Neuroscience, 2008, 11(2):a160–169.
[50]aMonory K, Massa F, Egertová M, et al. The endocannabinoid system controlsakey epileptogenic circuits in the hippocampus[J]. Neuron, 2006, 51(4): 455–a466.
[51]aRich M M, Wenner P. Sensing and expressing homeostatic synaptic plasticity[J].aTrends in Neurosciences, 2007, 30(3): 119–125.
[52]aMalenka R C, Bear M F. LTP and LTD: an embarrassment of riches[J]. Neuron,a2004, 44(1): 5–21.
[53]aCatapano J, Zhang J, Scholl D, et al. N-Acetylcysteine Prevents RetrogradeaMotor Neuron Death after Neonatal Peripheral Nerve Injury.[J]. Plastic andareconstructive surgery, 2017, 139(5): 1105e–1115e.
[54]aKorkut C, Li Y, Koles K, et al. Regulation of postsynaptic retrograde signalingaby presynaptic exosome release[J]. Neuron, 2013, 77(6): 1039–1046.
[55]aChevaleyre V, Takahashi K A, Castillo P E. Endocannabinoid-mediated synapticaplasticity in the CNS[J]. Annual Review of Neuroscience, 2006, 29: 37–76.
[56]aFreund T F, Katona I, Piomelli D. Role of endogenous cannabinoids in synapticasignaling[J]. Physiological Reviews, 2003, 83(3): 1017–1066.
[57]aBrown S P, Brenowitz S D, Regehr W G. Brief presynaptic bursts evokeasynapse-specific retrograde inhibition mediated by endogenous cannabinoids[J].aNature Neuroscience, 2003, 6(10): 1048–1057.
[58]aHashimotodani Y, Ohno-Shosaku T, Tsubokawa H, et al. Phospholipase Cbetaaserves as a coincidence detector through its Ca2+ dependency for triggeringaretrograde endocannabinoid signal[J]. Neuron, 2005, 45(2): 257–268.
[59]aBallard S L, Miller D L, Ganetzky B. Retrograde neurotrophin signalingathrough Tollo regulates synaptic growth in Drosophila[J]. The Journal of CellaBiology, 2014, 204(7): 1157–1172.
[60]aUesaka N, Uchigashima M, Mikuni T, et al. Retrograde signaling for climbingafiber synapse elimination[J]. Cerebellum (London, England), 2015, 14(1): 4–7.
[61]aMillet L J, Gillette M U. Over a century of neuron culture: from the hangingadrop to microfluidic devices[J]. The Yale journal of biology and medicine, 2012,a85(4): 501–521.
[62]aMajumdar D, Gao Y, Li D, et al. Co-culture of neurons and glia in a novelamicrofluidic platform[J]. Journal of Neuroscience Methods, 2011, 196(1): 38–a44.
[63]aPagella P, Neto E, Jiménez-Rojo L, et al. Microfluidics co-culture systems forastudying tooth innervation[J]. Frontiers in physiology, 2014, 5: 326–326.
[64]aPolanco J C, Li C, Durisic N, et al. Exosomes taken up by neurons hijack theaendosomal pathway to spread to interconnected neurons[J]. Actaaneuropathologica communications, 2018, 6(1): 10–10.
[65]aKorhonen P, Malm T, White A R. 3D human brain cell models: New frontiers inadisease understanding and drug discovery for neurodegenerative diseases[J].aNeurochemistry International, 2018, 120: 191–199.
[66]aOsaki T, Shin Y, Sivathanu V, et al. In Vitro Microfluidic Models foraNeurodegenerative Disorders[J]. Advanced Healthcare Materials, 2018, 7(2):a1700489.
[67]aHu P, Zhang W, Xin H, et al. Single Cell Isolation and Analysis[J]. Frontiers inaCell and Developmental Biology, 2016, 4: 116.
[68]aMuzumdar M D, Tasic B, Miyamichi K, et al. A global double-fluorescent Creareporter mouse[J]. genesis, 2007, 45(9): 593–605.
[69]aBrewer G J, Torricelli J R. Isolation and culture of adult neurons andaneurospheres[J]. : 9.
[70]aMartini F E A. Anatomy and Physiology’ 2007 Ed.2007 Edition[M]. RexaBookstore, Inc.
[71]aSingle cell sequencing[J]. 维基百科, 2019.
[72]aEberwine J, Sul J-Y, Bartfai T, et al. The promise of single-cell sequencing[J].aNature Methods, 2013, 11: 25.
[73]aPennisi E. Chronicling embryos, cell by cell, gene by gene[J]. Science, 2018,a360(6387): 367.
[74]aNeuron[J]. Wikipedia, 2019.
[75]aGranule cell[J]. Wikipedia, 2019.
[76]aClaiborne B J, Amaral D G, Cowan W M. Quantitative, three-dimensionalaanalysis of granule cell dendrites in the rat dentate gyrus[J]. Journal ofaComparative Neurology, 1990, 302(2): 206–219.
[77]aMegı́as M, Emri Z, Freund T F, et al. Total number and distribution of inhibitoryaand excitatory synapses on hippocampal CA1 pyramidal cells[J]. Neuroscience,a2001, 102(3): 527–540.
[78]aMicrofluidics[J]. Wikipedia, 2019.
[79]aLayton C J, McMahon P L, Greenleaf W J. Large-Scale, Quantitative ProteinaAssays on a High-Throughput DNA Sequencing Chip[J]. Molecular Cell, 2019,a73(5): 1075-1082.e4.
[80]aVolpatti L R, Yetisen A K. Commercialization of microfluidic devices[J]. Trendsain Biotechnology, 2014, 32(7): 347–350.
[81]aBhatia S N, Ingber D E. Microfluidic organs-on-chips[J]. Nature Biotechnology,a2014, 32: 760.
[82]aLee U N, Su X, Guckenberger D J, et al. Fundamentals of rapid injectionamolding for microfluidic cell-based assays[J]. Lab on a Chip, 2018, 18(3): 496–a504.
[83]aMicrofluidic cell culture[J]. 维基百科, 2019.
[84]aPolydimethylsiloxane[J]. 维基百科, 2019.
[85]aLu Z, Piechowicz M, Qiu S. A Simplified Method for Ultra-Low Density, LongaTerm Primary Hippocampal Neuron Culture[J]. Journal of visualizedaexperiments : JoVE, 2016(109): 53797.
[86]aDiI[J]. Wikipedia, 2019.
[87]aFACS (fluorescence-activated cell sorting)[G]//Encyclopedia of Genetics,aGenomics, Proteomics and Informatics. Dordrecht: Springer Netherlands, 2008:a668–668.

所在学位评定分委会
生物医学工程系
国内图书分类号
Q2-3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406084
专题工学院_生物医学工程系
推荐引用方式
GB/T 7714
梁芳昊. 小鼠海马神经元发育的信号调控研究[D]. 哈尔滨. 哈尔滨工业大学,2019.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11749075-梁芳昊-生物系.pdf(2838KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[梁芳昊]的文章
百度学术
百度学术中相似的文章
[梁芳昊]的文章
必应学术
必应学术中相似的文章
[梁芳昊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。