中文版 | English
题名

An Online Learning Collaborative Method for Traffic Forecasting and Routing Optimization

作者
发表日期
2021-10
DOI
发表期刊
ISSN
1558-0016
卷号22期号:10页码:6634-6645
关键词
相关链接[IEEE记录]
收录类别
学校署名
其他
WOS记录号
WOS:000704117000047
ESI学科分类
ENGINEERING
来源库
IEEE
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9072348
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/406092
专题工学院_机械与能源工程系
作者单位
1.Key Laboratory of Industrial Engineering and Intelligent Manufacturing, Ministry of Industry and Information Technology, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, China
2.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
3.Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, School of Construction Machinery, Chang’an University, Xi’an, China
4.Department of Production, University of Vaasa, Vaasa, Finland
5.James Watt School of Engineering, University of Glasgow, Glasgow, U.K.
推荐引用方式
GB/T 7714
Zhengang Guo,Yingfeng Zhang,Jingxiang Lv,et al. An Online Learning Collaborative Method for Traffic Forecasting and Routing Optimization[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(10):6634-6645.
APA
Zhengang Guo,Yingfeng Zhang,Jingxiang Lv,Yang Liu,&Ying Liu.(2021).An Online Learning Collaborative Method for Traffic Forecasting and Routing Optimization.IEEE Transactions on Intelligent Transportation Systems,22(10),6634-6645.
MLA
Zhengang Guo,et al."An Online Learning Collaborative Method for Traffic Forecasting and Routing Optimization".IEEE Transactions on Intelligent Transportation Systems 22.10(2021):6634-6645.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhengang Guo]的文章
[Yingfeng Zhang]的文章
[Jingxiang Lv]的文章
百度学术
百度学术中相似的文章
[Zhengang Guo]的文章
[Yingfeng Zhang]的文章
[Jingxiang Lv]的文章
必应学术
必应学术中相似的文章
[Zhengang Guo]的文章
[Yingfeng Zhang]的文章
[Jingxiang Lv]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。